
Getting Started
with WidgetKit

Create Widgets for iOS and iPadOS
—
Sagun Raj Lage
Prakshapan Shrestha

Getting Started with
WidgetKit

Create Widgets for iOS
and iPadOS

Sagun Raj Lage
Prakshapan Shrestha

1

2

3

4

5

6

Getting Started with WidgetKit: Create Widgets for iOS and iPadOS

ISBN-13 (pbk): 978-1-4842-7041-7 ISBN-13 (electronic): 978-1-4842-7042-4
https://doi.org/10.1007/978-1-4842-7042-4

Copyright © 2021 by Sagun Raj Lage and Prakshapan Shrestha

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Aaron Black
Development Editor: James Markham
Coordinating Editor: Jessica Vakili

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 NY
Plaza, New York, NY 10014. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@
springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and
the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/978- 1- 4842- 7041- 7.
For more detailed information, please visit http://www.apress.com/source- code.

Printed on acid-free paper

Sagun Raj Lage
Golmadhi, Nepal

Prakshapan Shrestha
Tokha, Nepal

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

https://doi.org/10.1007/978-1-4842-7042-4

To my father, late Shree Ram Lage, my role model, my
inspiration, my pride, who taught me what duties and

responsibilities mean. I hope I am making you proud, Baba.

To my mother, Jamuna Laxmi Sitikhu (Lage), my support
system, who has befriended struggles and has taught me to

bravely face challenges. I know you’ve made many sacrifices
to make me who I am today, Mamu.

To my little sister, Sarina Lage, who has always been there
for me in my highs and lows, joys and sorrows. And I know

you’ll be there for me in the days to come too. I love you.

To my grandparents, Ganga Laxmi Sitikhu and Narayan
Bhakta Sitikhu, who have always showered me with their

precious blessings and unconditional love.

To my uncles and aunts, Narayan Prasad Sitikhu and Ram
Devi Sitikhu, Sunil Kharbuja and Srijana Kharbuja,

Krishna Prasad Bohaju and Rejina Bohaju, for
wholeheartedly providing their guidance and love to me.

To the person who lit the spark of interest in computers,
gadgets, and technology in me since my childhood – my

uncle, Jibesh Sitikhu. I wouldn’t be where I am today
without your contributions, your teachings, your talks and
without breaking down your computer many times. And to

my aunt, Rajyashwori Sitikhu. You’re an epitome of
kindness and affection.

AU1

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

To my lovely cousins, Bigyan Sitikhu, Sachin Bohaju,
Binam Sitikhu, Salin Bohaju, Shrijal Kharbuja, Jibisha

Sitikhu, Swornim Kharbuja, Jibika Sitikhu, Raunak
Sitikhu, and Raunika Sitikhu. You have filled my life with

joy. I love you all.

To my brother from another mother, Kshitij Raj Lohani,
who has always helped me selflessly and who allowed me to

access and use his personal MacBook Pro in the United
States, from Nepal, for almost a year. I was able to join an
iOS bootcamp, write blogs on iOS development, and write

this book just because he allowed me to use his computer as
I couldn’t afford one.

To all my teachers, seniors, mentors, friends, and juniors.
You are my gems. I feel blessed to have you in life. Thank

you for everything!

—Sagun Raj Lage

To my dear mother.

—Prakshapan Shrestha

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

v

Chapter 1: Getting Familiar with WidgetKit in a Flash �������������������������1

Background ���1

Hello, WidgetKit! ��2

Summary���3

Chapter 2: SwiftUI, Human Interface Guidelines, and
Widget Family ���5

SwiftUI���5

Basic SwiftUI Views for Widgets ��7

Human Interface Guidelines ��14

Widget Family ���16

Summary���18

Chapter 3: Writing Your First Widget ��19

Widget Extension ��22

TimelineEntry ��24

TimelineProvider ���26

placeholder(in:) ��29

getSnapshot(in:completion:) ��30

getTimeline(in:completion:) ���33

Table of Contents

About the Authors ���vii

About the Technical Reviewer ���ix

Before You Begin… ���xi

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

vi

Developing Your Widget’s UI ��35

WidgetConfiguration ���39

Summary���44

Chapter 4: Making Widgets Configurable and Interactive ������������������45

Let’s Get Started ���45

Giving Widgets the Power to Talk to API ��58

Allowing Users to Configure Widgets ��62

Create and Configure a SiriKit Intent Definition File ��������������������������������������63

Switch to IntentConfiguration ��69

Talk to the API and Display Fresh Information in Widgets �����������������������������75

Time to Put Your Widgets to the Test! ��83

Navigating to the Relevant Screens of the App Through Tap Targets ������������������84

Addition of Tap Target in Small Widget ��86

Addition of Tap Target in Medium Widget ��91

Addition of Tap Target in Large Widget ��106

Summary���110

Chapter 5: Fetching Configuration Options ���������������������������������������111

Getting Started ��112

Time to Create a SiriKit Intent Definition File ��121

Setting Up IntentHandler to Fetch Top Trends and Send
Them to the Widget ���125

Switching to IntentConfiguration ��132

Create an IntentTimelineProvider ��132

Make the Switch to IntentConfiguration ��140

Test – Test – Test! ���141

Summary���141

 Index ���143

Table of ConTenTs

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

vii

About the Authors

Sagun Raj Lage started his professional career in software development

as a Full Stack Web Developer and later moved into developing iOS

applications. He has been a part of development teams on applications

used in fields such as transportation, multimedia, shopping, finance,

astrology, and management. He is actively involved in organizing

developer events and in contributing as a mentor and tutor in

programming bootcamps. Apart from software development and

programming, he enjoys reading and writing blogs, music, graphic design,

and video editing.

Prakshapan Shrestha is an entrepreneurial app developer with 6 years

of iOS development experience. He devoutly follows the latest tools and

technologies that make a developer's life easier and actively helps out

budding developers. Aside from software development, Prakshapan enjoys

hiking and heading his recent venture, Pregasathi, which provides new

families in need of baby products with help.

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

ix

About the Technical Reviewer

Felipe Laso is a Senior Systems Engineer working at Lextech Global

Services. He’s also an aspiring game designer/programmer. You can follow

him on Twitter at @iFeliLM or on his blog.

153

154

155

156

xi

Before You Begin…

Before you start exploring the beauty and power of WidgetKit through this

book, you will need to make sure you have the following prerequisites set up:

• A Mac running macOS Catalina (version 10.15.4) or
later: However, we recommend a Mac running macOS

Big Sur (version 11) or later as the code was tested on

that version.

• Xcode 12 or later: Xcode is the primary tool used

to develop apps for the Apple ecosystem. You can

download the latest version of Xcode from Apple’s

developer site.1 We recommend using Xcode 12.4 or

later as the code was tested on that version.

• Swift 5 or later: Since the new versions of Xcode ship

with the updated versions of Swift, you need not worry

about this.

• Simulators and devices with iOS 14 or later installed

since the WidgetKit framework, the framework you will

use to develop widgets, is only supported from iOS 14.

1 https://developer.apple.com/xcode/

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

https://developer.apple.com/xcode/

xii

• A Twitter Developer Account: In the last chapter

of this book, you will develop a widget that will use

Twitter’s API. And you will get access to Twitter’s

API only after you own a Twitter Developer Account.

You can apply for a developer account from Twitter’s

developer account page.2

Generally, it takes a day or two, or sometimes even

more, for Twitter to review your application and

approve or reject it. Therefore, it is a nice idea to

apply for that account before beginning this book so

that when you reach the last chapter, your Twitter

Developer Account will be ready to use.

2 https://developer.twitter.com/en/apply-for-access

before You begin…

175

176

177

178

179

180

181

182

183

184

185

186

https://developer.twitter.com/en/apply-for-access

Author Query
Chapter No.: 0005120291

Queries Details Required Author’s Response

AU1 Please check if edit to sentence starting “To the person who...” is
okay.

1© Sagun Raj Lage and Prakshapan Shrestha 2021
S. R. Lage and P. Shrestha, Getting Started with WidgetKit,
https://doi.org/10.1007/978-1-4842-7042-4_1

CHAPTER 1

Getting Familiar
with WidgetKit
in a Flash
This chapter will quickly introduce you to WidgetKit, Apple’s framework

to develop beautiful and handy widgets for iOS homescreen and macOS

Notification Center.

 Background
WWDC20 brought forward a number of exciting changes and features in

the Apple ecosystem. It caught the attention of not only the developers

but also of the end users, since it introduced some changes that carry the

potential to shape the future of the overall Apple ecosystem experience.

People were anticipating the release of the latest version of iOS in

the 20th edition of WWDC, and they got exactly what they were waiting

for – iOS 14, a package of awesome features and enhancements! Among

those features and enhancements, widgets created a lot of buzz in the

market.

Before iOS 14, widgets had very limited features, and they could be

seen in a vertical list of full-width boxes on the Today screen (the screen to

the left of the first page of the homescreen). That was quite an injustice for

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

https://doi.org/10.1007/978-1-4842-7042-4_1#DOI

2

widgets! But iOS 14 has changed the way iOS treated widgets. Now widgets

can contain more information and can show up in various sizes. And the

best part is that they are no more confined to be on the Today screen.

They can be dragged off the Today screen and placed on the homescreen,

together with app icons. And trust us, they look beautiful together.

Now you must be thinking, “Okay, enough of the talks! How can I

start?” The next section tells you everything about it.

 Hello, WidgetKit!
Apple introduced the WidgetKit framework to enable developers to

develop widgets of their apps. The beauty of widgets is that users can get

the latest information at a glance, without having to launch the app. And in

case users need more details, they can tap on the widget to navigate to the

appropriate location in the app.

WidgetKit allows you to create widgets of three different sizes – small,

medium, and large. These widgets can be used to display different amount

of information. For example, if you have a weather app, you can use the

small-sized widget to display only the current temperature in degree

Fahrenheit or degree Celsius. The medium-sized widget can display the

current location and the temperature. And since the large-sized widget

has a greater space, you can use it to display the current location, the

temperature, and a brief weather report of the day. And if the users want

a detailed report, they can launch the app by tapping the widget. So, for

companies, businesses, and developers, widgets are a nice way to keep

their users attracted and engaged to their app.

Chapter 1 GettinG Familiar with widGetKit in a Flash

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

3

Note Before developing widgets, you must keep in mind that the
widgetKit framework is available only in iOs 14 and above. so,
consider your target users before development. also, you will require
basic swiftUi knowledge and Xcode 12 or above to be able to develop
widgets.

 Summary
Now you have gained some familiarity with WidgetKit, Apple’s framework

to develop widgets of various sizes. Also, you now have an idea about how

widgets can help users to get up-to-date information at a glance and how

developers can develop beautiful and handy widgets to keep their users

attracted and engaged to their app. Plus, you have learned that iOS 14

is the minimum iOS version that supports widgets, and Xcode 12 is the

minimum version of Xcode that can be used to develop widgets.

Since SwiftUI is used to develop widgets, in the upcoming chapter, we

will give you an overview of SwiftUI and its views that you will use to create

widgets. You will learn more about the various sizes of widgets you can

create, and you will get an overview of Apple’s Human Interface Guidelines

(HIG) for widgets.

Chapter 1 GettinG Familiar with widGetKit in a Flash

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

4

EXERCISE

 1. Go through the overview section of the official documentation

of widgetKit from https://developer.apple.com/

documentation/widgetkit/. it can help you get a different

perspective to understand things. You can explore other

sections too, if you are interested.

 2. try completing at least the first chapter, swiftUi essentials, from

https://developer.apple.com/tutorials/swiftui/,

if you haven’t given swiftUi a try. this tutorial will help you

understand the basics and make you ready for the next chapter

of our book.

AU1

Chapter 1 GettinG Familiar with widGetKit in a Flash

https://developer.apple.com/documentation/widgetkit/
https://developer.apple.com/documentation/widgetkit/
https://developer.apple.com/tutorials/

Author Query
Chapter No.: 1 0005120286

Queries Details Required Author’s Response

AU1 Please check if the heading “EXERCISE” should be changed to
“EXERCISES” as there are two of them.

5© Sagun Raj Lage and Prakshapan Shrestha 2021
S. R. Lage and P. Shrestha, Getting Started with WidgetKit,
https://doi.org/10.1007/978-1-4842-7042-4_2

CHAPTER 2

SwiftUI, Human
Interface Guidelines,
and Widget Family
Now that you have a general idea about WidgetKit, you can move forward

to learn about some basic building blocks of a widget. In this chapter,

you will learn about some views of SwiftUI that will act as the building

blocks of your widget. Then, you will get an overview of Apple’s Human

Interface Guidelines for creating intuitive, easy-to-learn, and consistent

user interface for widgets. In addition to these, you will learn more about

WidgetFamily that enables you to create widgets of various sizes.

 SwiftUI
In WWDC 2019, Apple introduced SwiftUI – a framework that brought a

major change in the way iOS apps are developed. Before the introduction

of SwiftUI, there existed debates between developers about whether

they should use Storyboards or develop the app UI programmatically.

SwiftUI flushed out the debate and brought a new and easier way to create

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

https://doi.org/10.1007/978-1-4842-7042-4_2#DOI

6

beautiful and interactive user interfaces with eye-pleasing animations and

transitions. Note the phrase “new and easier way.” There are three major

reasons why developing apps using SwiftUI is easier:

 1. SwiftUI uses a declarative approach of
programming: A declarative approach allows you

to describe how your app’s user interface looks like

and what you want your app to do when a state

changes, without getting into much details. This

decreases the amount of code and makes it easier

to read, understand, and modify. Before SwiftUI,

we used an imperative approach of programming,

meaning that we had to write detailed step-by-step

instructions to lay out the user interface and control

the states. This generally led to a large volume of

code. With SwiftUI, things have become simpler.

 2. Bid farewell to Storyboard and Auto Layout:

Before SwiftUI, developers who didn’t prefer

developing a user interface programmatically used

Storyboard. Using Storyboard was a nice way, but

there was a hassle of using Auto Layout to make the

app’s interface look consistent on all screen sizes.

But now, SwiftUI has introduced a number of views

(like stacks and spacer) and their properties (like

padding) to make user interface appear consistent

with lesser effort.

 3. Learn once, apply anywhere: SwiftUI is a unified

user interface framework to build a user interface

for all types and sizes of Apple devices. It means

that you can easily port the UI code you wrote for

Chapter 2 SwiftUi, hUman interfaCe GUidelineS, and widGet family

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

7

iOS to macOS or watchOS without modifications

or with minimum modifications. Before the launch

of SwiftUI, we had to use different frameworks to

develop apps for different platforms – UIKit for

iOS, AppKit for macOS, WatchKit for watchOS, and

TVUIKit for tvOS.

Due to these reasons, we think that SwiftUI deserves the honor of

being called a lifesaver.

In SwiftUI, views act as the visual building blocks of the user interface

of your app. They are used to display texts, images, shapes, and drawings

in your app. Some views like TextField, Button, Slider, and Picker

even allow users to interact with them to manipulate data and the user

interface. What’s more interesting is that you can combine two or more

views to give birth to complex views too.

Widgets are also developed using SwiftUI. So, you will use SwiftUI’s

views to bring your widget to life. There is a wide variety of views that you

can use to develop widgets. However, an overview of some basic views that

are used more often will suffice.

 Basic SwiftUI Views for Widgets
Let’s go through some basic SwiftUI views that are often used to create

widgets.

 Text

You can use Text to display one or more lines of read-only text in your app

or widget. For example, if you want your app or widget to display the text

“SwiftUI is fun!”, you can write Text("SwiftUI is fun!"). You can also

modify the appearance and size of the text and view by playing with its

methods like font(), italic(), bold(), lineLimit(), and so on.

Chapter 2 SwiftUi, hUman interfaCe GUidelineS, and widGet family

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

8

 Button

Button is one of the most commonly used items in user interfaces. It is able

to perform an action when it is triggered through events. Its initializer takes

two arguments – an action and a label. Let’s write some code to create a

button that prints “Buttons are good!”.

In Listing 2-1, the button contains an action that prints “Buttons are

good!” when it is triggered.

Listing 2-1. A button in SwiftUI

Button(action: {

 print("Buttons are good!")

}) {

 Text("Tap me")

}

The second argument is a Text view that gives the button its title.

However, you can use other views here to change the composition of the

button and leverage various methods that a button provides to change its

appearance and size.

Are you thinking where you can use buttons in your widgets? Assume

that you have a to-do list app and your widget needs to display the items

that haven’t been completed yet. You have planned to represent each item

by an empty checkbox, followed by text. So, in this case, you can use a

button to create the checkbox, which when tapped removes the item from

the to-do list. Simple, right?

 Image

The name itself makes it clear that you can use an Image view to display

images in your app or widget. In the upcoming lessons, you will create

widgets that will display logos of football clubs. And you will use Image

views there.

Chapter 2 SwiftUi, hUman interfaCe GUidelineS, and widGet family

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

9

The Image view provides various methods to style the image it holds.

You can load an image stored in your Assets.xcassets folder by using

the Image(uiImage: UIImage) initializer. For example, if the name of

the image is “background,” you can load it in the Image view by writing

Image(uiImage: #imageLiteral(resourceName: "background")).

There exists another variety of the Image view initializer. It allows you

to load system symbol images provided by Apple. The initializer takes a

String argument, and it is the name of the system symbol image that you

want to use.

For example, if you want to load the trash icon, you can use its

system symbol name, "trash", and pass it in the initializer by writing

Image(systemName: "trash").

Tip you can use the Sf Symbols1 app to look up the names of
system symbol images.

 HStack

HStack is a view that arranges its child views horizontally. It allows you

to create a horizontal stack that arranges the views side by side. In the

upcoming chapters, you will use HStack to create views that will display the

name and the logo of a football club side by side horizontally. In Listing 2-2,

you will create an HStack that holds a Text and a Button.

1 https://developer.apple.com/sf-symbols/

Chapter 2 SwiftUi, hUman interfaCe GUidelineS, and widGet family

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

https://developer.apple.com/sf-symbols/

10

Listing 2-2. HStack in action

HStack {

 Text("New user?")

 Button(action: {

 print("Register button is tapped.")

 }) {

 Text("Register")

 }

}

Listing 2-2 shows an HStack in action. The HStack holds a Text view

that displays “New user?”, followed by a button displaying “Register.”

Figure 2-1 shows the screenshot of the result of Listing 2-2.

Figure 2-1. An HStack displaying a Text and a Button

th
is

 fi
gu

re
 w

ill
 b

e
pr

in
te

d
in

 b
/w

Chapter 2 SwiftUi, hUman interfaCe GUidelineS, and widGet family

122

123

124

125

126

127

128

129

130

131

132

133

11

HStack allows you to change the spacing between the items and the

alignment of the items.

 VStack

VStack enables you to create a vertical stack of views. In the upcoming

chapters, you will use VStack to create views that will display the date and

time of the upcoming football match in a vertical fashion. The code you

will write will be similar to the code given in Listing 2-3.

Listing 2-3. VStack in action

VStack {

 Text("On: August 19, 2021")

 Text("At: 6:00 PM")

}

Listing 2-3 is the code to create a vertical stack that displays the date

and time of the upcoming match. Figure 2-2 shows the screenshot of the

result of Listing 2-3.

Chapter 2 SwiftUi, hUman interfaCe GUidelineS, and widGet family

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

12

Like HStack, VStack also allows you to change the spacing between the

items and the alignment of the items.

 ZStack

Assume that you want to place some text over a picture. That is where

ZStack comes into action! ZStack is SwiftUI’s special type of stack that

overlaps views. Listing 2-4 shows the code to create a ZStack that places

the text “Welcome” over a picture.

Figure 2-2. A VStack displaying two Text views

th
is

 fi
gu

re
 w

ill
 b

e
pr

in
te

d
in

 b
/w

Chapter 2 SwiftUi, hUman interfaCe GUidelineS, and widGet family

149

150

151

152

153

154

155

13

Listing 2-4. ZStack in action

ZStack {

 Image(uiImage: #imageLiteral(resourceName: "welcome-bg"))

 Text("Welcome")

}

In Listing 2-4, we have written the Image view before the Text view

because we want the Text view to appear over the Image view. Figure 2-3

shows the screenshot of the result of Listing 2-4.

Figure 2-3. A ZStack displaying a Text view over an Image view

th
is

 fi
gu

re
 w

ill
 b

e
pr

in
te

d
in

 b
/w

Chapter 2 SwiftUi, hUman interfaCe GUidelineS, and widGet family

156

157

158

159

160

161

162

163

14

Note the view that you want to display on the foreground should
be written in the last line of the ZStack block.

ZStack allows you to change the alignment of the child views that you

include in it. However, you cannot change the spacing between the items

since it doesn’t make sense.

 Human Interface Guidelines
Human Interface Guidelines (HIG)2 are the recommendations Apple gives

to the developers for developing apps with intuitive, easy-to-learn, and

consistent user interface. You can consider HIG as an instruction manual

containing the dos and don’ts of user interface development for Apple

platforms.

Apple has prepared Human Interface Guidelines for developing

widgets too, and they help you understand what the qualities of a good

widget are and how you can develop such widgets. In short, the Human

Interface Guidelines suggest the following:

• Keep your widget focused upon a specific idea or

purpose and use it to display relevant content so that

users can get useful information at a glance, without

launching the app. Also, avoid creating a widget that

simply launches the app, as the app icon already does

it. In addition to this, just because WidgetKit allows you

to develop various sizes of widgets does not mean that

you should always develop widgets of all sizes. Do it

only when it adds value to your app.

2 https://developer.apple.com/design/human-interface-guidelines/ios/
system-capabilities/widgets/

Chapter 2 SwiftUi, hUman interfaCe GUidelineS, and widGet family

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

https://developer.apple.com/design/human-interface-guidelines/ios/system-capabilities/widgets/
https://developer.apple.com/design/human-interface-guidelines/ios/system-capabilities/widgets/

15

• You can allow widgets to be user configurable. But

make your widgets configurable only if your widgets

require users to configure them so that the widgets can

deliver the best output. Another interesting thing about

widgets is that you can add tap targets in them to make

navigation to relevant screens possible from the widget.

However, avoid adding too many tap targets as it may

give a bad user experience.

• A widget’s main function is to display fresh content. So,

make sure to figure out a proper update frequency by

analyzing how often changes are seen in the data and

by estimating how often people need to see updated

data in your widget.

• You can make your widget stand out from the crowd

of app icons and widgets by using your brand colors,

typefaces, and icons. However, displaying your logo,

wordmark, or app icon in the widget does not make

sense in most of the cases. Likewise, make sure that the

content density does not look crowded and your design

elements and colors do not make it difficult for users

to see the information your widget is trying to deliver.

In addition, adding support for dark mode, giving a

realistic preview of the widget along with a proper

description, and making use of placeholder content

for better user experience create a good impression in

front of users.

• Since users using variable-sized devices will install

your app and widgets, it is necessary for you to ensure

that they adapt well to those screen sizes. For that, size

the images you use in your widgets according to the

AU1

Chapter 2 SwiftUi, hUman interfaCe GUidelineS, and widGet family

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

16

size table given under the Size images to look great
on large devices and at high scale factors heading

in the Human Interface Guidelines for widgets.3 Also,

ensure that your texts and glyphs adapt well under the

various screen sizes. And use ContainerRelativeShape

to ensure that the content of your widget looks good

within the rounded corners of the widget.

 Widget Family
By now, you must have known that the WidgetKit framework allows you

to create widgets of various sizes – small, medium, and large. For this

purpose, you can use a special enum, WidgetFamily. It consists of three

cases – systemSmall, systemMedium, and systemLarge. And by looking at

the names of the cases, you can easily guess which case is responsible for

which size.

This variety in widget sizes gives users the freedom to place and

configure their widgets the way they prefer. Since each widget size can

accommodate different amounts of content and information within it,

it is up to the developers like you to choose what volume of content and

information you would like to display.

Just to give you a bird’s eye view at how you can use the three cases of

WidgetFamily to support various widget sizes, we have borrowed some

code from the official documentation4 and pasted it in Listing 2-5.

3 https://developer.apple.com/design/human-interface-guidelines/ios/
system-capabilities/widgets/

4 https://developer.apple.com/documentation/widgetkit/staticconfiguration

Chapter 2 SwiftUi, hUman interfaCe GUidelineS, and widGet family

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

https://developer.apple.com/design/human-interface-guidelines/ios/system-capabilities/widgets/
https://developer.apple.com/design/human-interface-guidelines/ios/system-capabilities/widgets/
https://developer.apple.com/documentation/widgetkit/staticconfiguration

17

Listing 2-5. A widget that supports all three widget families

struct GameStatusWidget: Widget {

 var body: some WidgetConfiguration {

 StaticConfiguration(

 kind: "com.mygame.game-status",

 provider: GameStatusProvider(),

 placeholder: GameStatusPlaceholderView()

) { entry in

 GameStatusView(entry.gameStatus)

 }

 .configurationDisplayName("Game Status")

 .description("Shows an overview of your game status")

 .supportedFamilies([.systemSmall, .systemMedium,

.systemLarge])

 }

}

You can see in Listing 2-5 that a widget named GameStatusWidget

has been created. You can ignore other lines and just pay attention to the

line that says .supportedFamilies([.systemSmall, .systemMedium,

.systemLarge]). This is the line that defines which sizes of widgets your

app should support.

supportedFamilies(_:) is an instance method of the

WidgetConfiguration protocol. It takes an array of WidgetFamily cases

as an argument and is used to set the sizes that a widget supports. Since

the StaticConfiguration struct, used in Listing 2-5, conforms to the

WidgetConfiguration protocol, it can access supportedFamilies(_:) to

set the widget size.

Chapter 2 SwiftUi, hUman interfaCe GUidelineS, and widGet family

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

18

Therefore, in Listing 2-5, the array [.systemSmall,

.systemMedium, .systemLarge] has been passed as an argument to

supportedFamilies(_:) to set the supported sizes to small, medium, and

large.

Tip we know, you may face difficulties while trying to understand
the things we described earlier. But do not worry since we will use
them in the exercises of our upcoming chapters. for now, you’re
doing great!

In case you want your app to support only a single size of widget,

that’s possible too. Assume that you want your app to support only a

medium-sized widget. For that, you can create an array containing a

.systemMedium case and pass it to supportedFamilies(_:) by writing

.supportedFamilies([.systemMedium]). As simple as that!

 Summary
By completing this chapter, you have learned about the SwiftUI views that

can be used as building blocks to create widgets of your app. Likewise, you

got an overview of Apple’s Human Interface Guidelines for widgets that

familiarized you with the purpose of widgets and gave you tips to develop

intuitive, easy-to-learn, and consistent user interface for widgets. In

addition to these, you learned more about WidgetFamily that enables you

to create widgets of various sizes.

The next chapter will teach you some important concepts of

widgets – timelines and links. But fear not – we are here to guide you!

Chapter 2 SwiftUi, hUman interfaCe GUidelineS, and widGet family

Author Query
Chapter No.: 2 0005120287

Queries Details Required Author’s Response

AU1 “app tap targets” has been changed to “add tap targets”. Please
check if okay.

19© Sagun Raj Lage and Prakshapan Shrestha 2021
S. R. Lage and P. Shrestha, Getting Started with WidgetKit,
https://doi.org/10.1007/978-1-4842-7042-4_3

CHAPTER 3

Writing Your
First Widget
Now comes the chapter in which you will finally get to make your hands

dirty by working on a project. In this chapter, you will create a widget

extension of an existing project and break that widget extension down

to see what it is made up of – timeline, timeline provider, widget view,

placeholder, snapshot, and widget configuration.

We have prepared a starter project so that you can get straight into

creating its widget. Find the zip file named SoccerTimeStarter.zip and

unzip it to get started with the project.

If you’ve successfully unzipped and opened the SoccerTime.
xcodeproj file of the SoccerTimeStarter folder, you will know that

SoccerTime is the project we will be working on. SoccerTime is an app

that displays the details of the upcoming soccer matches of your favorite

teams. It consists of two screens – one for adding upcoming matches

(Figure 3-1) and the other for displaying a list of the matches you add

(Figure 3-2). Launch the app to understand the features more clearly.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

https://doi.org/10.1007/978-1-4842-7042-4_3#DOI

20

Figure 3-1. The screen that displays the list of upcoming matches in
SoccerTime

th
is

 fi
gu

re
 w

ill
 b

e
pr

in
te

d
in

 b
/w

Chapter 3 Writing Your First Widget

21

Now here comes the interesting part – you will create SoccerTime’s

widget that will display information about the forthcoming matches you

add in the app. You will create a small-sized widget that will display the

logos of the two teams competing in the nearest upcoming match and a

countdown before the match begins. The widget will look like Figure 3-3.

Figure 3-2. The screen from where users add their favorite upcoming
matches

th
is

 fi
gu

re
 w

ill
 b

e
pr

in
te

d
in

 b
/w

Chapter 3 Writing Your First Widget

19

20

21

22

23

22

So, the first step is to add a widget extension to the project, and the

upcoming section describes everything about it.

 Widget Extension
The widget extension is a template that provides a basic structure and

boilerplate code to help you get started with creating your app’s widget.

It holds the widgets that you create. Apple recommends developers to

include all the widgets of an app in a single widget extension. However, it’s

also possible to create multiple widget extensions, if necessary.

To create a widget extension of SoccerTime, follow the steps given as

follows:

 1. Open SoccerTime.xcodeproj.

 2. Go to File ➤ New ➤ Target ➤ iOS.

 3. You can either scroll down or use filter to find

Widget Extension. Then double-click it.

Figure 3-3. The small-sized widget of SoccerTime

th
is

 fi
gu

re
 w

ill
 b

e
pr

in
te

d
in

 b
/w

Chapter 3 Writing Your First Widget

24

25

26

27

28

29

30

31

32

33

34

35

36

37

23

 4. Now a dialog box will appear where you will do the

following:

 a. Set Product Name to SoccerTimeWidget.

 b. Set Team to either None or choose your team.

 c. Uncheck Include Configuration Intent.

 d. Make sure that SoccerTime is the selected Project.

 e. Verify that SoccerTime is the selected application in the

Embed in Application field.

 f. Click Finish.

 5. Once you click finish, the widget extension gets

generated, and Xcode will ask one final question,

“Activate ‘SoccerTimeWidgetExtension’ scheme?”.

Click Agree so that that scheme is activated. The

change you will see in your Xcode screen after that

is shown in Figure 3-4.

After you’ve followed the steps mentioned earlier, the first thing you

will notice is the addition of the SoccerTimeWidget folder in the project.

This is where everything related to your widgets is kept.

From the SoccerTimeWidget folder, open SoccerTimeWidget.swift

to see the boilerplate code of the building blocks of your widget. You will

be making changes in this file to customize your widget. Now, we will give

you an overview of all the blocks in SoccerTimeWidget.swift. Also, we

Figure 3-4. A screenshot displaying SoccerTimeWidgetExtension as
the selected scheme

th
is

 fi
gu

re
 w

ill
 b

e
pr

in
te

d
in

 b
/w

Chapter 3 Writing Your First Widget

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

24

will guide you to make changes in that file so that you can create widgets

that will allow users to see the details of the upcoming matches in their

homescreen.

Note notice in the target Membership section of File
inspector that SoccerTimeWidget.swift has its target set to
SoccerTimeWidgetExtension instead of the SoccerTime.

 TimelineEntry
TimelineEntry is a protocol that specifies when a widget should be

displayed. It consists of a date property for indicating that. Also, it can

help the system determine the relevance of the widget’s content. These

capabilities of TimelineEntry are capitalized by TimelineProvider by

managing one or more timeline entries to tell WidgetKit when to display a

widget. Then, WidgetKit renders the widget by executing the content block

of the widget configuration, passing the corresponding timeline entry.

Note We know that you aren’t familiar with TimelineProvider
and WidgetConfiguration yet, but you will get to know
them in the upcoming sections. For now, you can just keep in
mind that TimelineProvider manages timeline entries and
WidgetConfiguration is the place from where you configure the
widget.

To use the features of TimelineEntry, you create a struct that conforms

to it. Since it is a type of model that WidgetConfiguration will require to

render the widget, you have to make sure you add all the properties that

WidgetConfiguration will need.

Chapter 3 Writing Your First Widget

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

25

In the current project, if you go to SoccerTime ➤ Model ➤ Match.
swift, you will see a model that the app is using to store details about a

match. Since your widget will display the same details that Match helps to

store, you can use this model.

If you look at the structure of Match, you will notice that it conforms

to Codable and Identifiable protocols. Now, to make it usable even as

a timeline entry, make it conform to the TimelineEntry protocol. For

that, WidgetKit needs to be imported first. So, in Match.swift, add the line

import WidgetKit in Listing 3-1 to the first line of the code.

Then, make Match conform to TimelineEntry by modifying it and

making it look like Listing 3-1.

Listing 3-1. Making a model conform to TimelineEntry

struct Match: Codable, Identifiable, TimelineEntry {

 var id = UUID()

 var primaryClub: String

 var secondaryClub: String

 var date: Date

}

If you build the project right now, you will encounter an error saying,

“Match does not conform to protocol ‘TimelineEntry’.” It is because a struct

conforming to TimelineEntry compulsorily needs to have a date property

of Date type. If you look thoroughly at Match, you will see that there already

is a property of Date type, that is, time. So, you can rename it to date since

the time property was there for the same purpose – to store date.

Now build the project and you will see that the renaming affected

the whole project. You will see errors in ListMatchView, MatchCell, and

AddMatchView. Rename time to date in all those places and build the

project to find all errors gone.

Chapter 3 Writing Your First Widget

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

26

 TimelineProvider
TimelineProvider can be considered as the driving force of the widget.

It is a protocol that lets WidgetKit know when it should update a widget’s

display. It fetches entries of type TimelineEntry and displays each entry at

the time stored in the entry’s date property.

Now, you will create a struct that conforms to TimelineProvider. But

before that, create a folder named SmallWidget in the SoccerTimeWidget

folder to store all the files related to the small variant of your widget.

Then, in the SmallWidget folder, create a Swift file and name

it SmallWidgetDataProvider. Before clicking Create, make sure to

check SoccerTimeWidgetExtension in the Targets section so that

SmallWidgetDataProvider becomes available in your widget extension

too.

Now, open SmallWidgetDataProvider.swift and replace the existing

code from that file with the code in Listing 3-2.

Listing 3-2. Creating SmallWidgetDataProvider

import SwiftUI

import WidgetKit

struct SmallWidgetDataProvider: TimelineProvider {

}

Listing 3-2 imports SwiftUI and WidgetKit and creates a struct named

SmallWidgetDataProvider that conforms to TimelineProvider.

Now, you’ll see an error saying “Type ‘SmallWidgetDataProvider’

does not conform to protocol ‘TimelineProvider’ . ” It is because you still

haven’t implemented the methods of that protocol. For now, you can

ignore that error.

Chapter 3 Writing Your First Widget

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

27

Now add the line typealias Entry = Match to

SmallWidgetDataProvider. That line implements the Entry typealias

property of the TimelineProvider protocol in SmallWidgetDataProvider.

As stated earlier, this is how you are feeding SmallWidgetDataProvider (a

timeline provider) a timeline entry (Match). Build the project.

Now you must be seeing a new error that says, “Cannot find type

‘Match’ in scope.” The reason behind this error is that Match.swift is not

a member of the SoccerTimeWidgetExtension target, hence not being

available in your widget extension. If you open Match.swift, you will see

in the Target Membership section of File Inspector that only SoccerTime

has been checked, and not SoccerTimeWidgetExtension. Right now, the

Target Membership section looks like Figure 3-5.

Figure 3-5. A screenshot displaying Match.swift’s target membership

th
is

 fi
gu

re
 w

ill
 b

e
pr

in
te

d
in

 b
/w

Chapter 3 Writing Your First Widget

138

139

140

141

142

143

144

145

146

147

148

149

28

Since you need to use Match in SoccerTimeWidgetExtension too, add

a checkmark on it.

It’s time to get rid of the only remaining error saying, “Type

‘SmallWidgetDataProvider’ does not conform to protocol

‘TimelineProvider’ . ” Open the error and click Fix. Then it will generate the

boilerplate code of TimelineProvider’s methods, and the code will look

similar to Listing 3-3.

Listing 3-3. Boilerplate code of SmallWidgetDataProvider

import WidgetKit

import SwiftUI

struct SmallWidgetDataProvider: TimelineProvider {

 typealias Entry = Match

 func placeholder(in context: Context) -> Match {

 <#code#>

 }

 func getSnapshot(in context: Context, completion: @escaping

(Match) -> Void) {

 <#code#>

 }

 func getTimeline(in context: Context, completion: @escaping

(Timeline<Match>) -> Void) {

 <#code#>

 }

}

Chapter 3 Writing Your First Widget

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

29

Listing 3-3 shows the code of SmallWidgetDataProvider. There

is boilerplate code of the three methods of TimelineProvider (that

SmallWidgetDataProvider conforms to), and it’s the developer’s job to

write their implementations. The basic overview of those methods is given

as follows, along with some hands-on work for you.

 placeholder(in:)
A placeholder displays a generic representation of your widget view during

its first load after being added to the homescreen. It can also be displayed

while your widget is in the process of retrieving new data.

In WidgetKit, the placeholder(in:) method of TimelineProvider is

responsible to return a placeholder timeline entry.

Let’s give it a try. After the line that says typealias Entry = Match in

SmallWidgetDataProvider, create a variable placeholderEntry of Match

type that returns a placeholder timeline entry. It is shown in Listing 3-4.

Listing 3-4. Declaration of a placeholderEntry variable

var placeholderEntry: Match {

 return Match(primaryClub: "none",

 secondaryClub: "none",

 date: Date())

}

As stated earlier, Listing 3-4 declares a variable placeholderEntry of

Match type and returns a Match object (that conforms to TimelineEntry)

with primaryClub and secondaryClub values set to "none" and the current

date.

Chapter 3 Writing Your First Widget

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

30

Note it’s not compulsory to create a placeholderEntry variable,
but since you will be using this same object in multiple places, it’s a
nice idea to create and store the object in a variable.

Now you can update the placeholder(in:) method to make it appear

like Listing 3-5.

Listing 3-5. placeholder(in:) method

func placeholder(in context: Context) -> Match {

 return placeholderEntry

}

In Listing 3-5, the placeholder(in:) method has been modified

to make it return the placeholderEntry variable you had declared in

Listing 3-4.

 getSnapshot(in:completion:)
iOS 14 comes with a widget gallery that displays the previews of the

widgets of all the apps in a device. From there, users can choose the widget

they want to show in their homescreen. For a widget, the widget gallery

is the platform to display its realistic preview and flaunt its beauty and

capabilities so that users can come to an informed decision about whether

to add it to their homescreen or not.

The getSnapshot(in:completion:) method of TimelineProvider is

what provides widgets the facility of flaunting their preview in the widget

gallery, when context.isPreview is set to true. This method is called

whenever the widget is in a transient state like appearing in the widget

gallery or waiting for data. So, it’s necessary to make sure that this method

doesn’t contain heavy calculations.

Chapter 3 Writing Your First Widget

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

31

In addition to this, getSnapshot(in:completion:) provides a timeline

entry representing the current time and state of a widget. So, using this

method, you will fetch the latest upcoming match to be displayed in your

widget. For that, you will have to fetch the current state of the widget using a

new method and perform calculation to get the latest upcoming match. So, in

SmallWidgetDataProvider, define the getLatestUpcomingMatch() method

right below the placeholder variable and write the code in Listing 3-6.

Listing 3-6. Definition of the getLatestUpcomingMatch() method

func getLatestUpcomingMatch() -> Match {

 if let matches: [Match] = AppUtils.

fetchDataWith(fileName: "Matches.json") {

 let upcomingMatches = matches.filter({ $0.date >

Date() })

 let sortedMatches = upcomingMatches.sorted(by: {

$0.date < $1.date })

 if let firstUpcomingMatch = sortedMatches.first {

 return firstUpcomingMatch

 }

 }

 return placeholderEntry

}

Chapter 3 Writing Your First Widget

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

32

Listing 3-6 defines the getLatestUpcomingMatch() method, and the

following operations take place in it:

 1. When you save matches in the app, all of those data are

stored in JSON format in a file called Matches.json.

So, in this step, you are checking if that file exists or

not using the fetchDataWith(filename:) method

of AppUtils. One thing to note is that the JSON file

could be stored in the document directory of the app.

But since more than one target (SoccerTime and

SoccerTimeWidget) needs to access that file, it had

to be stored in a container. Hence, to access the file in

the container, the getSharedDocumentsDirectory()

method was created in AppUtils, and it has been called

by fetchDataWith(filename:). So, if the JSON file

exists, then you move forward; else placeholderEntry

is returned.

Note as you will be using AppUtils in your widget
extension, make sure to update its Target Membership to
SoccerTimeWidgetExtension as well.

 2. In step 2, you’re filtering the matches with future

dates.

 3. Now matches are sorted in ascending order on

the basis of time. Hence, the match with the date

nearest to the current date lies at the first index, and

the match with the farthest date stays at last.

 4. Finally, the first match from the sorted array of

matches is fetched and returned.

Chapter 3 Writing Your First Widget

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

33

Now, update the getSnapshot(in:completion:) method as shown in

Listing 3-7 to give it the finishing touch.

Listing 3-7. Modification of the getSnapshot(in:completion:)

method

func getSnapshot(in context: Context, completion: @escaping

(Match) -> Void) {

 completion(getLatestUpcomingMatch())

}

Listing 3-7 modifies the getSnapshot(in:completion:) method to

make it return the nearest upcoming match and, hence, display it in the

widget preview shown in the widget gallery. If no upcoming matches

have been added in the app, the widget preview displays, “No upcoming

matches.”

 getTimeline(in:completion:)
getTimeline(in:completion:) is the brain of TimelineProvider. It provides

an array of timeline entries for the current time and, optionally, any future

times to update a widget. Moreover, it sets the timeline reload policy of

the widget to user preferred time. The reload policy determines when to

update the timeline to refresh the content being displayed in your widget.

There are three reload policies that are available:

 1. never: This policy updates the widget when a new

timeline is available.

 2. atEnd: It requests a new timeline after the date

specified in the last timeline passes.

 3. after: This policy requests a new timeline at a

specified date.

Chapter 3 Writing Your First Widget

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

34

The never refresh policy can be used in cases when you cannot

predict the date for refreshing the widget content. In that situation,

WidgetKit doesn’t request a new timeline, and when a new timeline

becomes available at some point, it calls reloadTimelines(of Kind:) of

the WidgetCenter class. For example, it makes sense to use never when a

widget’s content is dependent on the user being logged in to an account,

but they aren’t logged in.

But the case is different with atEnd and after. They are used when

future events are predictable and you know when to update the widget’s

content. To explain this, the official documentation gives an example of a

widget displaying stock market details.1 It says that it is a nice idea to use

atEnd or after in such a scenario because you can specify the next date

when the stock market opens or closes since the information generally

does not change overnight or during weekends.

Enough of the explanation. Now, modify the

getTimeline(in:completion:) method as shown in Listing 3-8.

Listing 3-8. Modification of the getTimeline(in:completion:)

method

func getTimeline(in context: Context, completion: @escaping

(Timeline<Match>) -> Void) {

 // 1

 let entry = getLatestUpcomingMatch()

 // 2

 let refresh = Calendar.current.date(byAdding: .second,

value: 1, to: entry.date)

1 https://developer.apple.com/documentation/widgetkit/timelineprovider

Chapter 3 Writing Your First Widget

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

https://developer.apple.com/documentation/widgetkit/timelineprovider

35

 // 3

 let timeline = Timeline(entries: [entry],

 policy: .after(refresh!))

 // 4

 completion(timeline)

}

In the code of Listing 3-8, the following tasks are being done:

 1. The nearest upcoming match is fetched using

getLatestUpcomingMatch(), and the fetched value

is stored in entry.

 2. Then, the next refresh time is set to be a second later

than entry’s date.

 3. In the third step, a timeline is created with entry

and an after refresh policy. The refresh policy is set

to be after the time we set up in step 2.

 4. Finally, the timeline is handed over to the widget.

In this way, the configuration of SmallWidgetDataProvider, a class

conforming to TimelineProvider, is complete. Now, it’s time to develop

the user interface of the widget using SwiftUI.

 Developing Your Widget’s UI
The last sections were all about configuring the working mechanism of

your widget. In this section, you will finally work on the user interface of

your widget. You will be making a small-sized widget, and the view you will

be creating is basically the same as the one normally made with SwiftUI,

but with some small tweaks. The widget will display the logos of the two

teams competing in the nearest upcoming match and a countdown before

the match begins.

Chapter 3 Writing Your First Widget

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

36

Start by creating a SwiftUI file. Navigate to the SmallWidget folder and

then create a SwiftUI View named SmallWidgetView by going to File ➤

New ➤ File… ➤ SwiftUI View. After setting the filename and choosing

the location, before clicking Create, remember to put a checkmark on the

SoccerTimeWidgetExtension target at the bottom of the dialog box.

After SmallWidgetView.swift is created, replace its content by the

code given in Listing 3-9.

Listing 3-9. SmallWidgetView.swift

// 1

import SwiftUI

import WidgetKit

struct SmallWidgetView: View {

 // 2

 var match: SmallWidgetDataProvider.Entry

 var body: some View {

 // 3

 VStack(alignment: .center) {

 HStack() {

 Club(value: match.primaryClub)

.logo.resizable()

.aspectRatio(contentMode: .fit)

 Text("vs").font(.footnote)

 Club(value: match.secondaryClub)

.logo.resizable()

.aspectRatio(contentMode: .fit)

 }.frame(height: 50)

 if match.date > Date() {

 Text(match.date, style: .timer)

 .font(.system(.title,

Chapter 3 Writing Your First Widget

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

37

 design: .monospaced))

 .foregroundColor(Color.gray)

 .multilineTextAlignment(.center)

 } else {

 Text("No upcoming matches.")

.foregroundColor(.gray)

 }

 }

}

}

Listing 3-9 is the code that lays out the user interface of your small-

sized widget. However, you must have seen an error saying “Cannot find

‘Club’ in scope” after pasting the code. To fix this, you need to make Club

available in the SoccerTimeWidgetExtension target, and by now you must

have had at least some blurry idea about how to do it. But it’s okay if you

haven’t been able to figure it out yet. Just go to the Clubs.swift file and put

checkmarks on both SoccerTime and SoccerTimeWidgetExtension in

the Target Membership of File Inspector. Also, do the same and update the

target membership of ImageExtension.swift (located in the Extensions

folder) by checking SoccerTimeWidgetExtension to avoid the errors like

“Type ‘Image’ has no member ‘alavés’ . ”

Now, let us explain what the code in Listing 3-9 does:

 1. Imports SwiftUI and WidgetKit.

 2. Declares a variable named match, which will be

used to provide data to the view. In the current

case, the data are TimelineEntry values from

SmallWidgetDataProvider.

Chapter 3 Writing Your First Widget

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

38

 3. The view is prepared using VStack and HStack to

show the information provided by the match. If the

entry’s date is not greater than the current time, then

“No upcoming matches.” is shown instead of a timer.

Till now, the Canvas window of SmallWidgetView must be saying “No

Preview.” It is because you removed the preview struct of SmallWidgetView

while replacing its content with the code of Listing 3-9. Now, fix it by

pasting the code in Listing 3-10 at the bottom of the file.

Listing 3-10. Preview struct of SmallWidgetView

struct SmallWidgetView_Previews: PreviewProvider {

 static var previews: some View {

 SmallWidgetView(match: Match(primaryClub: "",

secondaryClub: "", date: Date()))

 .previewContext(WidgetPreviewContext(family:

 .systemSmall))

 }

}

The code in Listing 3-10 creates a preview of SmallWidgetView, and as

soon as you paste it and click Resume in the Canvas window, a preview

like the one shown in Figure 3-6 is displayed.

Chapter 3 Writing Your First Widget

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

39

 WidgetConfiguration
Now it’s time to put everything together and make the widget work. For

that, you will need to add an entry point, that is, a struct conforming to the

Widget protocol and marked by the @main property wrapper. This struct

will contain a body with an instance of WidgetConfiguration, and that is

where you will join all the pieces together and configure your widget.

To create this entry point, navigate to the SmallWidget folder and

create a SwiftUI View named SmallWidget and also make sure you add a

checkmark to SoccerTimeWidgetExtension in Targets before creating that

file. Also, in Targets, if SoccerTime is checked, uncheck it.

Tip if you face confusions while creating a swiftui View, refer to the
second paragraph of “developing Your Widget’s ui” section.

Figure 3-6. A screenshot displaying the preview of small-sized widget

th
is

 fi
gu

re
 w

ill
 b

e
pr

in
te

d
in

 b
/w

Chapter 3 Writing Your First Widget

425

426

427

428

429

430

431

432

433

434

435

436

40

Now, replace the content of SmallWidget with the code given in

Listing 3-11.

Listing 3-11. SmallWidget.swift

import WidgetKit

import SwiftUI

// 1

@main

struct SmallWidget: Widget {

 // 2

 let widgetKind: String = "SmallSoccerTimeWidget"

 // 3

 var body: some WidgetConfiguration {

 StaticConfiguration(kind: widgetKind,

 provider: SmallWidgetDataProvider()) { match

 in

 // 4

 SmallWidgetView(match: match)

 }

 // 5

 .configurationDisplayName("Mini Widget")

 .description("Shows upcoming match.")

 .supportedFamilies([.systemSmall])

 }

}

Chapter 3 Writing Your First Widget

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

41

In Listing 3-11, the following things are done:

 1. SwiftUI and WidgetKit are imported, and a struct

SmallWidget conforming to Widget is created. Then,

SmallWidget is marked using the @main property

wrapper to let the system know that it is the entry point

for the target. In other words, the code execution for

rendering the small widget starts from here.

 2. widgetKind is defined using a unique string. It is

used to describe your widget.

 3. A Widget’s body should be an instance

of WidgetConfiguration. Since both

StaticConfiguration and IntentConfiguration

(to be discussed later) conform to

WidgetConfiguration, any of them can be used.

For now, you have used StaticConfiguration,

providing it widgetKind as kind and

SmallWidgetDataProvider as provider.

 4. In this step, it’s been written that SmallWidgetView

will act as the view of the widget, and it has been

provided with a timeline entry, match.

 5. In the fifth step, a configuration display name and a

description have been provided to the widget, and

they are displayed above your widget when users

see it in the widget gallery. The preview of how

the widget looks in the widget gallery is shown in

Figure 3-7. Also, since the goal is to just support the

small-sized widget, an array containing only the

systemSmall variety of WidgetFamily is passed to

the supportedFamilies() method.

Chapter 3 Writing Your First Widget

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

42

Figure 3-7. The preview of a small-sized widget of SoccerTime in the
widget gallery

This completes the setup of the widget. Now build and run to see the

results of your effort.

Note Before running, make sure that the currently selected scheme
is SoccerTimeWidgetExtension. For reference, refer to Figure 3-3. if
SoccerTime is the selected scheme, the app will run, not the widget.

th
is

 fi
gu

re
 w

ill
 b

e
pr

in
te

d
in

 b
/w

Chapter 3 Writing Your First Widget

43

But it doesn’t run, does it? This is because there are two entry points

for your widget right now. Delete the boilerplate file SoccerTimeWidget.
swift, created by Xcode when you had first generated the widget extension.

Now build and run again.

Now it should run and your simulator should display the small-sized

widget in its homescreen, and it should look similar to Figure 3-8.

Figure 3-8. A screenshot of the small-sized widget in the homescreen

th
is

 fi
gu

re
 w

ill
 b

e
pr

in
te

d
in

 b
/w

Chapter 3 Writing Your First Widget

490

491

492

493

494

495

44

You can play around with the widget and the application. Currently,

you may see bugs and limitations, but we will address them one after

another in the upcoming chapters.

 Summary
Congratulations on making it this far! This might have been a challenging

chapter for you, but no matter how hard it was, you made it. By completing

this chapter, you have created your very first widget for iOS using

SwiftUI. Also, you have gained some familiarity with the building blocks

of widgets like timeline, timeline provider, widget view, placeholder,

snapshot, and widget configuration. To sum up, a widget is made up of

three core components:

 1. Views: SwiftUI views that are used by WidgetKit as a

user interface

 2. TimelineProvider: A protocol responsible to update

the widget content according to the context passed

at a specified date

 3. WidgetConfiguration: Binds all the building blocks

of a widget together and configures the widget

You may still have confusions about things, but have patience and

practice more. And please refer to the final code of the project in the

SoccerTimeFinal folder of the SoccerTime.zip file. Plus, you don’t have to

worry as you will use those concepts in the upcoming chapters as well.

The next chapter will teach you about links which will enable users to

tap on your widget and navigate to a relevant screen in your app for getting

more details about the content shown in your widget. Till then, keep up the

good work!

Chapter 3 Writing Your First Widget

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

45© Sagun Raj Lage and Prakshapan Shrestha 2021
S. R. Lage and P. Shrestha, Getting Started with WidgetKit,
https://doi.org/10.1007/978-1-4842-7042-4_4

CHAPTER 4

Making Widgets
Configurable
and Interactive
One special thing about widgets is that users can configure them and

also interact with them to some extent. In this chapter, you will learn how

you can make your widget configurable and interactive so that users will

fall in love with your widget. To make your widget configurable, you will

use IntentConfiguration. And you will make the views in your widget

tappable so that users can tap them and navigate to various screens using

deep links. As this chapter has a lot of important things to cover, you may

find it longer than other chapters of this book. So, it is a good idea to give

this chapter some days and even perform revisions.

 Let’s Get Started
To begin working, you can unzip the file named OnThisDay.zip. If you’ve

successfully unzipped it, open the OnThisDayStarter folder and run

OnThisDay.xcodeproj to see OnThisDay in action. OnThisDay is an

application that displays the events that historically took place on the

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

https://doi.org/10.1007/978-1-4842-7042-4_4#DOI

46

system date, by making use of Wikipedia’s “On This Day REST API.”1 It lists

various types of events like births, deaths, events, holidays, and selected

events under their respective section headers. Figures 4-1 and 4-2 give you

an idea of how the app actually looks.

1 https://en.wikipedia.org/api/rest_v1/#/Feed/onThisDay

Figure 4-1. The homescreen of OnThisDay displaying a list of birthdays

th
is

 fi
gu

re
 w

ill
 b

e
pr

in
te

d
in

 b
/w

Chapter 4 Making Widgets Configurable and interaCtive

19

20

21

22

https://en.wikipedia.org/api/rest_v1/#/Feed/onThisDay

47

Another interesting feature of OnThisDay is that you can choose

the type of the event and get a filtered list of the events of that particular

type. And that choice stays persistent even after you close and rerun the

app – meaning that if you choose Selected from the menu, even when you

Figure 4-2. The homescreen of OnThisDay displaying a list of
section headers

th
is

 fi
gu

re
 w

ill
 b

e
pr

in
te

d
in

 b
/w

Chapter 4 Making Widgets Configurable and interaCtive

23

24

25

26

48

close and rerun the app, only Selected events will be displayed in the list.

Thanks to UserDefaults2 for making this possible! Figure 4-3 displays a

menu from which you can select a type or category of events.

2 https://developer.apple.com/documentation/foundation/userdefaults

Figure 4-3. Choosing “Selected” events from the menu

th
is

 fi
gu

re
 w

ill
 b

e
pr

in
te

d
in

 b
/w

Chapter 4 Making Widgets Configurable and interaCtive

27

28

29

https://developer.apple.com/documentation/foundation/userdefaults

49

Also, you can tap on an event to see more details and a photo related

to that event. Refer to Figure 4-4 to see the screenshot of the event detail

screen. OnThisDay also shows the pages related to that event, and you

can tap on those pages to navigate to their Wikipedia pages. That screen is

shown in Figure 4-5.

Figure 4-4. A detail screen displayed after tapping an event on the
homescreen

th
is

 fi
gu

re
 w

ill
 b

e
pr

in
te

d
in

 b
/w

Chapter 4 Making Widgets Configurable and interaCtive

30

31

32

33

34

50

Now you must have deduced that OnThisDay is a fully functional app.

Yes, it is. But, why not create its widgets and display some information

on the user’s homescreen? Widgets surely can help to make your app

look more useful to the user. That is why we have done some part of the

work for you. We have already created a widget extension of OnThisDay

as OnThisDayWidgetExtension and written all three families of widgets

Figure 4-5. A Wikipedia page loaded after tapping a “Related Page”
in the detail screen

th
is

 fi
gu

re
 w

ill
 b

e
pr

in
te

d
in

 b
/w

Chapter 4 Making Widgets Configurable and interaCtive

35

36

37

38

39

40

51

for OnThisDay. Choose the OnThisDayWidgetExtension scheme and

run the code to see the small widget of OnThisDay on your simulator’s or

device’s homescreen (Figure 4-6).

Add the other two widget families also to your homescreen by long

pressing a space in the homescreen and tapping the “+” icon. Then from

the app list, tap OnThisDay and scroll to your desired widget family and

tap Add Widget.

Currently, the widgets are displaying dummy data, but later you

will integrate Wikipedia’s “On This Day REST API” to display updated

information.

Now, let’s move on to how the widgets look like. The small widget

(Figure 4-7), as it has less space, displays only the number of events that

took place historically on the system date.

Figure 4-6. A screenshot displaying OnThisDayWidgetExtension as
the selected scheme

Figure 4-7. Small-sized widget of OnThisDay

th
is

 fi
gu

re
 w

ill
 b

e
pr

in
te

d
in

 b
/w

th
is

 fi
gu

re
 w

ill
 b

e
pr

in
te

d
in

 b
/w

Chapter 4 Making Widgets Configurable and interaCtive

41

42

43

44

45

46

47

48

49

50

51

52

53

52

But since the medium widget (Figure 4-8) can accommodate some

more views, it not only shows the number of events that took place

historically on the system date but also some information about a couple

of events.

And the large widget (Figure 4-9) displays the same information that

the medium widget displays, but in a greater amount and a different

arrangement.

Figure 4-8. Medium-sized widget of OnThisDay

Figure 4-9. Large-sized widget of OnThisDay

th
is

 fi
gu

re
 w

ill
 b

e
pr

in
te

d
in

 b
/w

th
is

 fi
gu

re
 w

ill
 b

e
pr

in
te

d
in

 b
/w

Chapter 4 Making Widgets Configurable and interaCtive

54

55

56

57

58

59

60

53

In addition to this, at the later part of this chapter, you will make your

widgets configurable – meaning that users will be able to long press on

your widgets and Edit Widget to select the type/category of events whose

information they would like the widget to display. Hence, if the users

select Holidays, only the information of the events lying in the “Holidays”

category will be displayed in the widget. Figure 4-10 is the screenshot

of the widget displaying the list of options given when a widget is long

pressed, and Figure 4-11 is the screenshot of the widget displaying the

configuration option shown after tapping Edit Widget. In addition to

these, Figure 4-12 shows the event categories that users can choose from to

make their widget display information about.

Figure 4-10. The list of options displayed when a widget is long pressed

th
is

 fi
gu

re
 w

ill
 b

e
pr

in
te

d
in

 b
/w

Chapter 4 Making Widgets Configurable and interaCtive

61

62

63

64

65

66

67

68

69

70

71

54

Figure 4-11. The configuration option displayed after tapping Edit
Widget in Figure 4-10

Figure 4-12. The event categories users can choose from to make the
widget display information about

th
is

 fi
gu

re
 w

ill
 b

e
pr

in
te

d
in

 b
/w

th
is

 fi
gu

re
 w

ill
 b

e
pr

in
te

d
in

 b
/w

Chapter 4 Making Widgets Configurable and interaCtive

55

Now, it’s time that you look at the already existing code. As we have

already stated earlier, we have already set up some basic stuff.

If you go to the Project Navigator and open the OnThisDay project,

you will find two main folders, that is, OnThisDay and OnThisDayWidget.

The OnThisDay folder contains the files and folders related to the app, and

the OnThisDayWidget folder contains the files and folders related to the

widgets. There are also certain files which are used by both the app and the

widgets, and those files are shared using Target Membership.

Open the OnThisDay folder in the OnThisDay project to see the

following folder structure:

OnThisDay

├── Assets.xcassets

├── Extensions

│ ├── URL.swift

│ └── View.swift

├── Info.plist

├── Models

│ ├── ContentURL.swift

│ ├── EventData.swift

│ ├── EventType.swift

│ ├── OTDResponse.swift

│ ├── OriginalImage.swift

│ ├── Page.swift

│ └── URLData.swift

├── OnThisDayApp.swift

├── Preview\ Content

├── Utilities

│ ├── DateHelper.swift

│ └── WebView.swift

├── ViewModels

│ └── OTDViewModel.swift

Chapter 4 Making Widgets Configurable and interaCtive

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

56

└── Views

 ├── Custom\ Views

 │ ├── DetailRowView.swift

 │ ├── HomeRowView.swift

 │ ├── RelatedPageRowView.swift

 │ └── TrailingNavView.swift

 ├── DetailView.swift

 └── HomeView.swift

You will see Assets.xcassets and Info.plist in that folder. Likewise,

there is a folder called Extensions that stores the extensions of various

structs.

In addition to these, there is a Models folder that contains the files

used to parse the response data received after calling Wikipedia’s API

endpoint.

OnThisDayApp.swift is the main entry point of your app, and the

Preview Content folder is a folder generated by Xcode to store the assets

used for development purposes. The files in this folder are not included by

Xcode in release builds.

There is a Utilities folder, and it contains various utilities used by the

app for serving purposes like working with dates and loading webview.

And the ViewModel folder contains OTDViewModel.swift, the view

model for the app.

Finally, the Views folder contains a number of files and folders. There

are various small views stored in the Custom Views folder, and those views

are used by HomeView.swift and DetailView.swift, which contain the user

interface of the app.

That’s the description of the folder and files in the OnThisDay folder.

Chapter 4 Making Widgets Configurable and interaCtive

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

57

Now, open the OnThisDayWidget folder to see the following folder

structure:

OnThisDayWidget

├── Assets.xcassets

├── Info.plist

├── Model

│ └── WidgetEventData.swift

├── Provider

│ └── Provider.swift

├── Views

│ ├── LargeWidgetView.swift

│ ├── MediumWidgetView.swift

│ ├── SmallWidgetView.swift

│ └── WidgetView.swift

└── Widget

 └── OnThisDayWidget.swift

Other than the Assets.xcassets folder and Info.plist file, you will see

a folder called Model that contains WidgetEventData.swift. This model

contains a TimelineEntry called WidgetEvent which is vital for your

widgets to work.

Likewise, there is a folder called Provider containing Provider.swift,

which is the TimelineProvider of the widgets. If you remember, it is what

drives a widget by fetching TimelineEntry values.

The next folder that you can see is Views, and it contains

LargeWidgetView.swift, MediumWidgetView.swift, SmallWidgetView.
swift, and WidgetView.swift. Those files contain the user interface of your

widgets. The WidgetView.swift file is the main file that determines which

view should be rendered when a particular widget family is chosen by

users.

Chapter 4 Making Widgets Configurable and interaCtive

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

58

And lastly, the Widget folder contains the OnThisDayWidget.swift

file, which is the entry point for the OnThisDayWidgetExtension target.

It is currently using StaticConfiguration, which you will replace with

IntentConfiguration to make your widgets configurable.

 Giving Widgets the Power to Talk to API
In this section, you will remove dummy data from your widgets and give

them the capability to call Wikipedia’s “On This Day API” to fetch fresh

data and to display latest information. For now, do not worry about the

categories/types of events as you will make your widget fetch and display

information about all types of events.

 1. Create a new file named OnThisDayAPI.swift in

the Provider folder of OnThisDayWidget. Make

sure that the OnThisDayWidgetExtension target is

checked while creating this file.

 2. Copy and paste the code in Listing 4-1 to that

file to create an OnThisDayAPI struct with a static

fetchOnThisDayData(with:) method.

Listing 4-1. OnThisDayAPI struct with a static method to call

Wikipedia’s API

struct OnThisDayAPI {

 static func fetchOnThisDayData(with completion: @escaping

([WidgetEventData]) -> Void) {

 guard let today = DateHelper.getDayAndMonthInNumbers(),

 let url = URL(string: "https://en.wikipedia.org/

api/rest_v1/feed/onthisday/all/\(today.month)/

\(today.day)") else { return }

Chapter 4 Making Widgets Configurable and interaCtive

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

59

 let task = URLSession.shared.dataTask(with: url) {

data, response, _ in

 if let data = data,

 let response = response as? HTTPURLResponse,

 response.statusCode == 200 {

 do {

 let otdResponse = try JSONDecoder().

decode(OTDResponse.self, from: data)

 var responses: [EventData] = []

 responses = otdResponse.selected +

otdResponse.births + otdResponse.deaths +

otdResponse.events + otdResponse.holidays

 completion(responses.map({ WidgetEventData

(text: $0.text) }))

 } catch {

 completion([])

 print("JSON Decoding Error.")

 }

 completion([])

 }

 }

 task.resume()

 }

}

Listing 4-1 consists of the OnThisDayAPI struct that contains a

static method named fetchOnThisDayData(with:). This method calls

Wikipedia’s API to fetch all types of events that took place on the system

date that is returned by the DateHelper.getDayAndMonthInNumbers()

method and stored in the today variable. Then the response is decoded,

and it is returned to the caller using its completion handler that takes an

array of WidgetEventData as an argument.

Chapter 4 Making Widgets Configurable and interaCtive

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

60

Now, since you have fetchOnThisDayData(with:) ready, it’s time to

call it. Go to Provider.swift and replace getTimeline(in:completion:)

with the code given in Listing 4-2.

Listing 4-2. getTimeline(in:completion:) method that performs an

API call by calling fetchOnThisDayData(with:)

func getTimeline(in context: Context, completion: @escaping

(Timeline<Entry>) -> Void) {

 // 1

 OnThisDayAPI.fetchOnThisDayData { widgetData in

 // 2

 let currentDate = Date()

 // 3

 let refreshDate = Calendar.current.date(byAdding:

.day, value: 1, to: currentDate)!

 // 4

 let entry = WidgetEvent(date: currentDate, events:

widgetData)

 // 5

 let timeline = Timeline(entries: [entry], policy:

.after(refreshDate))

 // 6

 completion(timeline)

 }

}

In the code of Listing 4-2, the following things are happening:

 1. The static fetchOnThisDayData(with:) method of

the OnThisDayAPI struct is called.

Chapter 4 Making Widgets Configurable and interaCtive

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

61

 2. As soon as the completion handler of

fetchOnThisDayData(with:) returns the results

as widgetData, the current date is stored in

currentDate.

 3. Now the date of the next day is stored in

refreshDate. It will be used later to set up the

widget’s refresh policy.

 4. Since a widget depends upon timeline entries to

create a timeline, a WidgetEvent timeline entry

is created and stored in entry. And the values

of currentDate and widgetData, received as

the response of the API call, are passed to the

WidgetEvent constructor.

 5. As there is at least one timeline entry, it’s time to

create a timeline. So, a timeline is created and stored

in timeline by passing an array containing entry.

Also, the refresh policy is set to make the widget

request new timeline after refreshDate. In this way,

the widget is set to refresh everyday.

Now, select the OnThisDayWidgetExtension scheme (if you haven’t

selected it) and run the code to see your widgets fetching data from

Wikipedia’s API. Right now, your widgets will display information about all

the events (and not an event of a certain category). Initially, the widget(s)

may take some time before loading updated data. So, have some patience

and enjoy your achievement. Your small, medium, and large widgets

should look similar to Figures 4-7, 4-8, and 4-9, respectively.

You have successfully given your widgets the capability to load

event information from an API. Well done! But events can lie in different

categories, and users may want information related to a particular event

Chapter 4 Making Widgets Configurable and interaCtive

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

62

category only. In the upcoming section, you will add the feature to allow

users to configure your widgets to display information related only to a

certain category.

 Allowing Users to Configure Widgets
This section will be about making your widgets configurable. Right

now, your widgets are displaying event information regardless of their

categories. But maybe some users would love to configure their widgets

in such a way that they get information only about a specific category of

events. Maybe someone would like to keep track of birthdays of historical

personalities, or maybe someone likes to get information about special

historical events that took place. To serve that purpose, you can develop

your widgets in such a way that users can select their preferred event

category and configure them to show information related to that particular

event category.

Now this is where IntentConfiguration comes into play. Till now,

you have used StaticConfiguration only because you did not need to

allow your users to configure widgets according to their preferences. If

you do not remember where you had used StaticConfiguration, open

the OnThisDayWidget folder. There, you will see a folder called Widget.

Open it to find OnThisDayWidget.swift, which is the entry point of

your widgets. This is where you have created a StaticConfiguration.

In OnThisDayWidget.swift, you should see a block of code similar to

Listing 4-3.

Chapter 4 Making Widgets Configurable and interaCtive

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

63

Listing 4-3. The StaticConfiguration in OnThisDayWidget.swift

var staticConfiguration: some WidgetConfiguration {

 StaticConfiguration(kind: kind, provider: Provider()) {

entry in

 WidgetView(events: entry.events)

 }

 .supportedFamilies([.systemSmall, .systemMedium,

.systemLarge])

 .configurationDisplayName("On This Day")

 .description("Events that occured this day.")

 }

You will change this configuration to IntentConfiguration and make

some other changes in some time to make your widgets configurable. Now

it’s time to get to work by following the given steps.

 Create and Configure a SiriKit Intent
Definition File
Firstly, you will create an intent definition file since it will allow you to

define customizable or configurable properties for your widgets. For

creating that file and configuring it, follow the steps given as follows:

 1. Right-click the OnThisDayWidget folder in your

project and click New File….

 2. In the dialog box that appears, select SiriKit
Intent Definition File, name it EventCategory.
intentdefinition, and create the file. While

creating the file, make sure that both

OnThisDayWidgetExtension and OnThisDay

targets are checked at the bottom of the dialog

AU1

Chapter 4 Making Widgets Configurable and interaCtive

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

64

box. If you do not check the OnThisDay target

while creating this file, your configuration options

(category selection field in your case) will not

appear in the configuration screen of your widgets.

 3. Now, open EventCategory.intentdefinition.

Click the “+” icon at the bottom left of the intent

file, and from the list of options, click New Intent

(Figure 4-13).

Figure 4-13. Creating a new intent in the intent definition file

th
is

 fi
gu

re
 w

ill
 b

e
pr

in
te

d
in

 b
/w

Chapter 4 Making Widgets Configurable and interaCtive

322

323

324

325

326

327

328

329

65

 4. Give your intent the name EventCategory. Then, go

to the right side of the file and set the Category to

View.

 5. Since you are going to use the intent for widgets

only, put a checkmark on Intent is eligible for
widgets and remove checkmarks from Intent is
user-configurable in the Shortcuts app and Add to
Siri and Intent is eligible for Siri Suggestions.

 6. Now, add a parameter named categories in the

Parameters section by clicking the “+” button

below it. The parameters added in the Parameters

section are the configurable properties that users

will see and interact with in the configuration screen

of the widget. As you complete typing the name,

you will see the display name set to Categories.

The display name is displayed in the configuration

screen of the widget (Figure 4-11).

 7. Then change the type of the categories parameter

to Add Enum… as you would like to display a list

of selectable categories to the user in the widget

configuration screen displayed in Figures 4-11 and

4-12. For your ease, this step is shown in Figure 4-14.

Chapter 4 Making Widgets Configurable and interaCtive

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

66

 8. After clicking Add Enum…, a new screen is

displayed that looks like Figure 4-15. Then, change

the name of the enum to Categories by typing it in

the item under the ENUMS header at the left.

Figure 4-14. Creating a parameter called “categories” and changing
its “Type” to “Add Enum…”

Figure 4-15. The screen shown after clicking “Add Enum…”

th
is

 fi
gu

re
 w

ill
 b

e
pr

in
te

d
in

 b
/w

th
is

 fi
gu

re
 w

ill
 b

e
pr

in
te

d
in

 b
/w

Chapter 4 Making Widgets Configurable and interaCtive

352

353

354

355

67

 9. Now, go back to the EventCategory custom intent

and select the categories parameter. Then, remove

the checkmark from Siri can ask for value when
run, as we do not want to work with Siri.

 10. Again, open the Categories enum shown below the

ENUMS header. Now it’s time to add cases by clicking

the “+” icon below the Cases section. Set the names

of the cases to all, births, deaths, events, holidays,

and selected and their display names to All, Births,

Deaths, Events, Holidays, and Selected, respectively.

These display names are shown to users in the

configuration screen (Figure 4-12). If you have noticed

the index of each case, you will see that the index of

unknown is set as 0, and it cannot be modified. But,

the indices of other cases are set in a numerical order,

and Xcode allows you to modify them. At the end,

your enum will look like Figure 4-16.

Figure 4-16. The final look of the Categories enum

th
is

 fi
gu

re
 w

ill
 b

e
pr

in
te

d
in

 b
/w

Chapter 4 Making Widgets Configurable and interaCtive

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

68

 11. Now for the final step, open the EventCategory

custom intent and select the categories parameter

in the Parameters section to see its configuration.

Under the Input section at the right side of the

window, set Default Value to All so that your widget

displays information about all categories of events

in case users do not ever configure your widgets

to get information related to a certain category of

events (Figure 4-17).

Like this, you have completed creating and setting up your intent

definition file. Congratulations! You are now one step closer to making

your widget configurable.

Figure 4-17. Setting the “Default Value” of “categories” to “All.”

th
is

 fi
gu

re
 w

ill
 b

e
pr

in
te

d
in

 b
/w

Chapter 4 Making Widgets Configurable and interaCtive

373

374

375

376

377

378

379

380

381

382

383

384

69

 Switch to IntentConfiguration
As mentioned previously, you had used StaticConfiguration till now

because there was no need to make your widgets user configurable.

But now, you want to make them user configurable, and you have

already completed the first step of the setup. Now, it’s time to switch to

IntentConfiguration. For that, you will have to follow the given steps:

 1. Right-click the Provider folder of the

OnThisDayWidget folder, click New File…, and

create a new Swift file named IntentProvider.swift.

Make sure the OnThisDayWidgetExtension target

is checked at the bottom of the dialog box before

creating the file.

Note You could use the existing Provider.swift file instead of
creating IntentProvider.swift, but for better clarity, we recommend
you to create IntentProvider.swift.

 2. Open the IntentProvider.swift file and replace the

existing code content with the code given in Listing 4-4.

Listing 4-4. Creating IntentProvider that conforms to

IntentTimelineProvider

import SwiftUI

import WidgetKit

struct IntentProvider: IntentTimelineProvider {

}

Chapter 4 Making Widgets Configurable and interaCtive

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

70

 3. In Listing 4-4, a struct named IntentProvider that

conforms to IntentTimelineProvider is created.

As soon as you add the code, Xcode will ask if you

want to add protocol stubs. Click Fix and add them

to see two typealiases, Entry and Intent, added to

the struct.

 4. In the IntentProvider struct, replace the type

placeholder of Entry with WidgetEvent, a timeline

entry type. Also, replace the type placeholder of

Intent with EventCategoryIntent. The name

EventCategoryIntent was generated from the

custom intent, EventCategory, you had previously

created in your intent definition file, that is,

EventCategory.intentdefinition.

Tip While replacing the type placeholder of Intent with
EventCategoryIntent in IntentProvider, it would be a
better idea to type EventCategoryIntent yourself to check
if Xcode gives the autocompletion or not. it can help you verify if
EventCategoryIntent has been generated by Xcode or not.

Now your code should look similar to the code in Listing 4-5.

Listing 4-5. IntentProvider after adding Entry and Intent types

import SwiftUI

import WidgetKit

struct IntentProvider: IntentTimelineProvider {

 typealias Entry = WidgetEvent

 typealias Intent = EventCategoryIntent

}

Chapter 4 Making Widgets Configurable and interaCtive

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

71

 5. Still Xcode must be asking you to add protocol stubs.

Add them too to find placeholder(in:), getSnapshot

(for:in:completion:), and getTimeline(for:in:

completion:) methods generated.

 6. For now, you can fill up those methods by copying

and pasting code from the methods in Provider.
swift to make IntentProvider look like Listing 4-6.

Note keep in mind that the methods in IntentProvider
are different from those in Provider. Provider has
methods like getSnapshot(in:completion:) and
getTimeline(in:completion:), but IntentProvider
has methods like getSnapshot(for:in:completion:) and
getTimeline(for:in:completion:).

so, while copying code from Provider, make sure that you do not
copy the whole methods but only the lines within the braces of those
methods. for ease, you can copy the code from listing 4-6.

Listing 4-6. IntentProvider after implementing required methods

import SwiftUI

import WidgetKit

struct IntentProvider: IntentTimelineProvider {

 typealias Entry = WidgetEvent

 typealias Intent = EventCategoryIntent

Chapter 4 Making Widgets Configurable and interaCtive

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

72

 func placeholder(in context: Context) -> WidgetEvent {

 WidgetEvent(date: Date(), events: WidgetEventData.events)

 }

 func getSnapshot(for configuration: EventCategoryIntent, in

context: Context, completion: @escaping (WidgetEvent) ->

Void) {

 let entry = WidgetEvent(date: Date(), events:

WidgetEventData.events)

 completion(entry)

 }

 func getTimeline(for configuration: EventCategoryIntent,

in context: Context, completion: @escaping

(Timeline<WidgetEvent>) -> Void) {

 OnThisDayAPI.fetchOnThisDayData { widgetData in

 let currentDate = Date()

 let refreshDate = Calendar.current.date(byAdding: .day,

value: 1, to: currentDate)!

 let entry = WidgetEvent(date: currentDate, events:

widgetData)

 let timeline = Timeline(entries: [entry], policy:

.after(refreshDate))

 completion(timeline)

 }

 }

}

 7. Since it’s necessary for the timeline entries in

your widget to know the selected event category,

you need to modify your timeline entry model.

Navigate to WidgetEventData.swift in Model and

add a new property, category, of the Categories

Chapter 4 Making Widgets Configurable and interaCtive

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

73

type to the WidgetEvent struct. Categories is the

enum that you had defined in EventCategory.
intentdefinition. Also, set its value to .all to make

it the default selected category. Now, WidgetEvent

should look similar to Listing 4-7.

Listing 4-7. WidgetEvent struct after adding the category property

struct WidgetEvent: TimelineEntry {

 var date: Date

 var events: [WidgetEventData]

 var category: Categories = .all

}

 8. Now go back to IntentProvider.swift. The

implementations of placeholder(in:) and

getSnapshot(for:in:completion:) do not

need to be modified, except that of getTimeline(

for:in:completion:).

The configuration parameter in getTimeline(for:

in:completion:) stores all the widget configuration

values set by users. Hence, it also holds the category

value set by users. This category value needs to be

passed to each timeline entry so that the widget can

fetch the event data related to a specific event category.

You can pass the category value to each timeline entry

by using the category property you just added in

WidgetEvent in step 7. If you see the implementation

of getTimeline(for:in:completion:), you can find

the line shown in Listing 4-8.

Chapter 4 Making Widgets Configurable and interaCtive

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

74

Listing 4-8. The line in getTimeline(for:in:completion:) that creates

a WidgetEvent timeline entry

let entry = WidgetEvent(date: currentDate, events: widgetData)

Listing 4-8 shows the line of code in getTimeline

(for:in:completion:) that creates a WidgetEvent

timeline entry and stores it into entry. Now, replace

that line with the line given in Listing 4-9.

Listing 4-9. Creation of a WidgetEvent timeline entry that takes the

category as an argument

 let entry = WidgetEvent(date: currentDate, events:

widgetData, category: configuration.categories)

Listing 4-9 creates a WidgetEvent timeline entry

that takes the category from configuration data

as an argument. This completes the setup of

IntentProvider.

 9. In this step, you will finally use the IntentProvider

you just configured. Open OnThisDayWidget.
swift in the Widget folder and replace the body of

OnThisDayWidget with the code in Listing 4-10.

Listing 4-10. OnThisDayWidget’s body using IntentConfiguration

var body: some WidgetConfiguration {
 IntentConfiguration(kind: kind,
 intent: EventCategoryIntent.self,
 provider: IntentProvider()) { entry in
 WidgetView(events: entry.events)
 }
 .supportedFamilies([.systemSmall, .systemMedium,

.systemLarge])

Chapter 4 Making Widgets Configurable and interaCtive

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

75

 .configurationDisplayName("On This Day")

 .description("Events that occured this day.")

 }

If you look at the code in Listing 4-10, you will

see that the body of OnThisDayWidget has an

IntentConfiguration initializer instead of

a StaticConfiguration initializer. The only

difference between those initializers is that

IntentConfiguration takes an argument, intent,

with the value, EventCategoryIntent.self (you

had created this custom intent in EventCategory.

intentdefinition), and another argument,

provider, with an initializer of IntentProvider.

All the other codes are identical to that of the

StaticConfiguration initializer that was previously

being used. Also, delete the staticConfiguration

variable as you will not need it anymore.

Like this, you have completed switching to

IntentConfiguration from StaticConfiguration.

Now it’s time to make the API call and display the

result in the views.

 Talk to the API and Display Fresh Information
in Widgets
If you open OnThisDayAPI.swift, the file that contains the

OnThisDayAPI struct responsible to perform API calls, and study its static

fetchOnThisDayData(with:) method, you will see that no work has been

done to fetch and return data according to a selected event category. It

just performs an API call to Wikipedia’s REST API endpoint, which returns

Chapter 4 Making Widgets Configurable and interaCtive

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

76

data related to various categories of events under different keys. Then, the

method stores those data of each and every category in a variable called

response and returns it. Hence, currently, the method is returning only

the results of the all category. Let’s modify this method so that it is able to

filter and return events lying in categories other than all too. Replace the

fetchOnThisDayData(with:) method with the code given in Listing 4-11.

Listing 4-11. fetchOnThisDayData(for:completion:) method

 static func fetchOnThisDayData(for type: Categories,

completion: @escaping ([WidgetEventData]?) -> Void) {

 guard let today = DateHelper.getDayAndMonthInNumbers(),

 let url = URL(string: "https://en.wikipedia.org/api/

rest_v1/feed/onthisday/all/\(today.month)/\(today.

day)") else { return }

 let task = URLSession.shared.dataTask(with: url) { data,

response, _ in

 if let data = data,

 let response = response as? HTTPURLResponse,

 response.statusCode == 200 {

 do {

 let otdResponse = try JSONDecoder().decode(

OTDResponse.self, from: data)

 var responses: [EventData] = []

 switch type {

 case .births: responses = otdResponse.births

 case .deaths: responses = otdResponse.deaths

 case .events: responses = otdResponse.events

 case .holidays: responses = otdResponse.holidays

 case .selected: responses = otdResponse.selected

 default: responses = otdResponse.selected

Chapter 4 Making Widgets Configurable and interaCtive

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

77

 + otdResponse.births + otdResponse.deaths + otdResponse.events

+ otdResponse.holidays

 }

 completion(responses.map({ WidgetEventData(text:

$0.text) }))

 } catch {

 completion(nil)

 print("JSON Decoding Error.")

 }

 }

 }

 task.resume()

}

Listing 4-11 is the code that replaces the old

fetchOnThisDayData(with:) method. This new method fetchOnThisDay

Data(for:completion:), in addition to the completion handler, has a new

parameter named for of type Categories. This for parameter plays an

important role in filtering the data according to the selected category. It is

visible in the switch case used in the code. A switch case is applied on the

type variable (previously for variable), and only the results of a particular

category are returned by the method as long as other categories, except

the default category all, are selected. For example, if the selected type/

category is births, the method will return only the data held by the births

key of the API response.

Now build the code to see the locations affected by this change.

The first location affected is Provider.swift. Since the struct in this file

was being used by StaticConfiguration and now you are no longer

using StaticConfiguration, delete Provider.swift. After that, the only

affected area remaining will be IntentProvider.swift. Xcode must be

saying, “Missing argument for parameter ‘for’ in call.” Click Fix to make

Xcode add the necessary argument for. And replace the placeholder

Chapter 4 Making Widgets Configurable and interaCtive

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

78

with configuration.categories to fetch the selected category from your

widget’s configuration. Now your call to the fetchOnThisDayData(for:

completion:) method in getTimeline(for:in:completion:) should look

something like Listing 4-12.

Listing 4-12. fetchOnThisDayData(for:completion:) method after

fetching categories from the widget’s configuration

func getTimeline(for configuration: EventCategoryIntent, in

context: Context, completion: @escaping (Timeline<WidgetEvent>)

-> Void) {

 OnThisDayAPI.fetchOnThisDayData(for: configuration.

categories) { widgetData in

 let currentDate = Date()

 let refreshDate = Calendar.current.date(byAdding: .day,

value: 1, to: currentDate)!

 let entry = WidgetEvent(date: currentDate, events:

widgetData, category: configuration.categories)

 let timeline = Timeline(entries: [entry], policy:

.after(refreshDate))

 completion(timeline)

 }

 }

Still, you must be seeing another error message from Xcode. This time,

it must be saying, “Value of optional type '[WidgetEventData]?' must be

unwrapped to a value of type '[WidgetEventData]'.” To get rid of this, use

guard-let to unwrap the optional widgetData value received from the

fetchOnThisDayData(for:completion:) method’s completion handler.

After using guard-let, the function call of fetchOnThisDayData(for:

completion:) in getTimeline(for:in:completion:) should look like

Listing 4-13.

Chapter 4 Making Widgets Configurable and interaCtive

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

79

Listing 4-13. fetchOnThisDayData(for:completion:) method

unwrapping widgetData using guard-let

func getTimeline(for configuration: EventCategoryIntent, in

context: Context, completion: @escaping (Timeline<WidgetEvent>)

-> Void) {

 OnThisDayAPI.fetchOnThisDayData(for: configuration.

categories) { widgetData in

 guard let widgetData = widgetData else { return }

 let currentDate = Date()

 let refreshDate = Calendar.current.date(byAdding: .day,

value: 1, to: currentDate)!

 let entry = WidgetEvent(date: currentDate, events:

widgetData, category: configuration.categories)

 let timeline = Timeline(entries: [entry], policy:

.after(refreshDate))

 completion(timeline)

 }

 }

After using guard-let to unwrap widgetData as shown in Listing 4-13,

the error message should be gone. Build your project to verify it.

Now there is one more thing remaining, that is, setting up the widget

views to display the selected category. If you take a look at how the widgets

look, you will see that there is a text that says, “200 births took place on JAN

20.”, if the selected event category is births, the date is January 20, and the

number of events in the births category is 200. So, let’s set up the view.

Start setting up the view by adding the line of code given in Listing 4-14

in WidgetView, SmallWidgetView, MediumWidgetView, and

LargeWidgetView.

Chapter 4 Making Widgets Configurable and interaCtive

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

80

Listing 4-14. Creating a variable “category” of Categories type

var category: Categories

As soon as you complete creating that variable in all views, you will

see errors in the previews of SmallWidgetView, MediumWidgetView, and

LargeWidgetView since the argument for parameter category has not

been passed in the previews. Click Fix to add the category parameter and

set the argument to .all. For example, in the case of SmallWidgetView,

something like Listing 4-15 can be done.

Listing 4-15. Fixing the preview of SmallWidgetView by passing a

category

struct SmallWidget_Previews: PreviewProvider {

 static var previews: some View {

 SmallWidgetView(eventCount: 5, category: .all)

 .previewContext(WidgetPreviewContext(family:

.systemSmall))

 }

}

Pass a category argument in the previews of MediumWidgetView and

LargeWidgetView to get rid of the error messages.

Now, if you build the project, you will still see more errors. This

time, the errors are in WidgetView.swift since the initializers of

SmallWidgetView, MediumWidgetView, and LargeWidgetView in the switch

case have not been passed the category argument. Pass the category

argument to make the body of your WidgetView look similar to Listing 4-16.

Chapter 4 Making Widgets Configurable and interaCtive

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

81

Listing 4-16. The body of WidgetView after passing a category to all

widget families

@ViewBuilder

 var body: some View {

 switch family {

 case .systemSmall: SmallWidgetView(eventCount: events.

count, category: category)

 case .systemMedium: MediumWidgetView(events: events,

category: category)

 case .systemLarge: LargeWidgetView(events: events,

category: category)

 default: EmptyView()

 }

 }

In Listing 4-16, the category variable of WidgetView is passed as an

argument for the category parameters of all families of widget views.

Now, the error remains only in OnThisDayWidget.swift. Add

the category parameter and pass entry.category as its argument

in WidgetView’s initializer to remove that error. After that, the body of

OnThisDayWidget will look like Listing 4-17.

Listing 4-17. The body of OnThisDayWidget after passing a

category to WidgetView’s initializer

var body: some WidgetConfiguration {

 IntentConfiguration(kind: kind,

 intent: EventCategoryIntent.self,

 provider: IntentProvider()) { entry in

 WidgetView(events: entry.events, category: entry.category)

 }

Chapter 4 Making Widgets Configurable and interaCtive

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

82

 .supportedFamilies([.systemSmall, .systemMedium,

.systemLarge])

 .configurationDisplayName("On This Day")

 .description("Events that occured this day.")

 }

If you have done everything mentioned earlier but are unable to

understand what happened, let us explain. You passed the selected

category received from the entry variable of the completion handler of

the IntentConfiguration initializer in OnThisDayWidget, which is the

entry point of your widget, to WidgetView, your main widget view. Then,

from WidgetView, category was further passed to SmallWidgetView,

MediumWidgetView, and LargeWidgetView.

Now, SmallWidgetView, MediumWidgetView, and LargeWidgetView are

ready to use their category variables to display the selected category in the

widgets. But before that, let’s do some necessary setup.

Create a new folder Intent and move EventCategory.intentdefinition

into that folder. Now, create a new Swift file in the Intent folder and

name it CategoriesExtension.swift. Make sure that OnThisDay and

OnThisDayWidgetExtension targets are selected while creating

that file. Now, copy the code given in Listing 4-18 and paste it in

CategoriesExtension.swift.

Listing 4-18. Creating an extension of Categories

extension Categories {

 var detail: String {

 switch self {

 case .births: return "births"

 case .all: return "historic events"

 case .events: return "events"

 case .deaths: return "deaths"

 case .holidays: return "holidays"

Chapter 4 Making Widgets Configurable and interaCtive

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

83

 case .selected: return "special events"

 default: return "historic events"

 }

 }

}

In Listing 4-18, an extension of Categories is created. It contains a

detail variable of String type. Using the switch case, it returns the string

to be displayed in the widgets according to the selected category.

Now, in SmallWidgetView, MediumWidgetView, and LargeWidgetView,

search for the text Text("events") and replace it with Text(category.

detail) so that the category of the selected event is displayed on the

widget.

Finally, it’s time to test your widgets!

 Time to Put Your Widgets to the Test!
In your simulator or device, uninstall any existing installation of

OnThisDay and remove any existing widget of OnThisDay. Then, select

and run the OnThisDay target first to install it on your simulator or device.

After that, select and run the OnThisDayWidgetExtension target to install

the widgets. After the widgets are shown in the homescreen, try going

to its configuration screen and selecting a different category. You can

refer to Figures 4-10, 4-11, and 4-12. After selecting a new category, the

information related to the events of that particular category should show

up in your widget.

Well done! You have successfully made your widgets user configurable.

Chapter 4 Making Widgets Configurable and interaCtive

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

84

 Navigating to the Relevant Screens
of the App Through Tap Targets
Did you try tapping the different elements of your widgets you created

in the previous section? The app must be launching and showing its

homescreen no matter where you tap in your widgets. This should be

changed as your widget is not your app icon, but way more than that. And

if you see the “Human Interface Guidelines” section of Chapter 2 of this

book, you will find the following statements under the heading, “Tapping

your widget should open your app at the right location”:

When a user taps an app icon, the app should launch and dis-
play its home screen. But when a user taps a widget, the app
should launch to show the screen containing the details and
actions useful and relevant to the widget’s content.

So, in this section, you will define tap targets that, when tapped, will

use deep links to make navigation to various relevant screens of your app

possible.

Note deep linking is a technique with which you can make a link
or url not only open your app but also automatically navigate to the
desired location of your app. it is very popular these days and has
been adopted by various companies and organizations in their apps
and services.

a nice example of a company utilizing the power of deep linking is
Medium. if you open Medium’s website and read an article in your
phone’s browser, you will see a button that says, “open in app” at
the top of the page. after tapping that button, if you are using an
ios device and do not have the Medium app installed, the app store

AU2

Chapter 4 Making Widgets Configurable and interaCtive

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

85

will launch in your device and display the installation page of the
Medium app. but if you are using an ios device with the Medium
app installed, it will launch and take you to the same article you were
reading, inside the app. that’s some awesome deep linking magic!

For example, if you take a look at your medium-sized widget

(Figure 4- 18), you will see that there are various areas and elements

which can be used as tap targets to make navigation to the screens

containing the details and actions relevant to the tap targets’ content

possible. The potential tap targets are highlighted using rectangles with

red borders in Figure 4-18.

In Figure 4-18, the first potential tap target is the area that says, “207

births took place on JAN 20.” As the currently selected category of events

is Births, you can make that area tappable to navigate users to the app’s

homescreen that displays only the events lying in the Births category.

Also, you can see that there are a couple of birth events listed at

the right side of the widget. So, you can define tap targets of each event

in the list to directly navigate users to the detail screen of that tapped

event. Hence, this time, the screen that will be displayed will not be the

homescreen, but the detail screen with the content and actions relevant to

the event that was tapped in the widget. For example, in Figure 4-18,

Figure 4-18. Highlighting the elements which can be made
tappable

th
is

 fi
gu

re
 w

ill
 b

e
pr

in
te

d
in

 b
/w

Chapter 4 Making Widgets Configurable and interaCtive

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

86

if users tap the event that says, “Calum Chambers, English footballer,” then

users should see the detail screen containing the details about “Calum

Chambers.”

There is one more potential tap target that informs users that there are

more events that could not be listed in the widget. In Figure 4-18, it says,

“205 more.” Therefore, it’s obvious that by tapping it, users will expect to

go to the app’s homescreen that displays all the events lying in the Births

category.

Since the large-sized widget is similar to the medium-sized widget, the

potential tap targets are the same.

But in the case of a small-sized widget, WidgetKit allows you to define

only a single tap target, as it has little space and can accommodate less

content. So, in your small widget, you can define a tap target that takes

users to the homescreen that displays a list of events lying in the selected

category.

 Addition of Tap Target in Small Widget
In small widgets, you can add a tap target using the widgetURL(_:)

method. It is an instance method of View, and it sets the URL to open in the

app when users tap a widget. Another View method onOpenURL(perform:)

detects if any deep link is trying to open the app, and that is where you

perform necessary operations to make navigation to different screens

possible. So, in the case of small widgets, these two methods play the key

role to make navigation possible.

Now let’s set things up!

The widgetURL(_:) method takes a URL as an argument in order to

set that URL for opening the app when its small widget is tapped. So, it is

necessary to create a URL for the widgetURL(_:) method (which you will

implement later). But what will you use to generate a URL? You will surely

need a name or some other string for that. What about using the name of

the selected category itself? That will be a nice way since you will get both

Chapter 4 Making Widgets Configurable and interaCtive

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

87

the URL and the selected category value which you will use in the app’s

homescreen to display the events lying in that category. Now, follow the

given steps to develop a mechanism for generating a URL:

 1. Open CategoriesExtension.swift from the Intent

folder of OnThisDayWidget.

 2. In the extension of Categories, copy the code of

Listing 4-19 and paste it there to define a property,

eventType, of type EventType.

Listing 4-19. Creating an eventType property in the Categories

extension

var eventType: EventType {

 switch self {

 case .unknown, .all: return .all

 case .births: return .births

 case .deaths: return .deaths

 case .events: return .events

 case .holidays: return .holidays

 case .selected: return .selected

 }

 }

eventType was created in the Categories extension

because you need to generate a String from the

selected category of Categories type for creating a

URL. Since EventType conforms to String and its

rawValue property can be accessed to get the string

of the selected category, you created eventType to

map all the cases of Categories with EventType and

get the string rawValue.

Chapter 4 Making Widgets Configurable and interaCtive

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

88

 3. After that, open SmallWidgetView.swift in the

Views folder of the OnThisDayWidget folder.

 4. Replace the body of SmallWidgetView with the code

given in Listing 4- 20.

Listing 4-20. The body of SmallWidgetView after adding

widgetURL(_:)

var body: some View {

 HStack {

 VStack(alignment: .leading) {

 Text(eventCount.description)

 .font(.system(size: 40,

 weight: .medium))

 .foregroundColor(.red)

 Text(category.detail)

 .font(.body)

 Text("took place on")

 .font(.body)

 Text(DateHelper.today + ".")

 .font(.headline)

 }

 Spacer()

 }

 .padding([.leading, .top, .bottom])

 .widgetURL(URL(string: category.eventType.rawValue))

 }

In Listing 4-20, the widgetURL(_:) method is

called by passing a URL created using the rawValue

property of the eventType property of category as

an argument.

Chapter 4 Making Widgets Configurable and interaCtive

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

89

 5. Open HomeView.swift from the Views folder

of OnThisDay. In HomeView, create a method,

handleLinks(for:), to handle deep linking and

copy the code in Listing 4-21 and paste it there.

Listing 4-21. Implementation of handleLinks(for:)

func handleLinks(for url: URL) {

 if let type = EventType(rawValue: url.absoluteString) {

 self.type = type

 }

 }

In Listing 4-21, the handleLinks(for:) method is

implemented. The absoluteString3 property of

url is accessed to get its string value, and the string

value is passed to the EventType initializer that

takes rawValue as an argument and tries to convert

it to an EventType case. If a valid EventType case is

generated, then it is stored in the type variable. At

last, the type variable of HomeView is set to the value

of the type variable of the if-let condition. Here,

the type variable of HomeView is a @State variable

that stores the selected event category/event type

and displays the events accordingly.

 6. Now, go to the body of HomeView. This is where

you will call onOpenURL(perform:) to detect

if a deep link is trying to launch your app.

3 https://developer.apple.com/documentation/foundation/
nsurl/1409868-absolutestring

Chapter 4 Making Widgets Configurable and interaCtive

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

https://developer.apple.com/documentation/foundation/nsurl/1409868-absolutestring
https://developer.apple.com/documentation/foundation/nsurl/1409868-absolutestring

90

Below the onAppear(perform:) function call in

the body of HomeView, add the function call to

onOpenURL(perform:) and make the changes

shown in Listing 4-22.

Listing 4-22. HomeView’s body after calling onOpenURL(perform:)

 var body: some View {

 NavigationView {

 // Some lines of code have been removed to make

viewing easier

 }

// Some lines of code have been removed to make viewing easier

 .onAppear(perform: initiateDataFetch)

 .onOpenURL { url in

 handleLinks(for: url)

 }

 }

In Listing 4-22, the onOpenURL(perform:) method

is called, whose completion handler gives a

parameter, url. That parameter is passed to

handleLinks(for:), which performs the work of

filtering the data and setting up the view to display

events related to the selected event category/type.

Note the call to onOpenURL(perform:) is performed in the body
of HomeView because HomeView is the main view that gets loaded
from the entry point of the app, that is, OnThisDayApp. You will see
it if you open the OnThisDayApp.swift file in the OnThisDay folder.

AU3

Chapter 4 Making Widgets Configurable and interaCtive

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

91

however, you could have called onOpenURL(perform:) from the
OnThisDayApp struct using the instance of HomeView. but due to the
availability of the data needed for performing necessary operations,
you called it from the body of HomeView.

swiftui has given you the freedom to call onOpenURL(perform:)
from any of these locations according to your preference and ease.

Now, build and run the project. Try changing the selected category

of the events by long pressing the small widget, tapping Edit Widget, and

modifying the value of the Categories field. Then, wait for the widget

display information about the events of the selected category. After the

fresh information is displayed in the widget, tap the widget to see the

homescreen of the app displaying the list of events related to the selected

category.

Well done! You have successfully added a tap target in your small

widget and utilized the power of deep linking to make your app display

relevant information.

 Addition of Tap Target in Medium Widget
As shown in Figure 4-18, you can have multiple tap targets in your medium

and large widgets. So, in this section, you will add tap targets in your

medium widget.

In the medium widget, there are three regions where you can add tap

targets. Open and preview MediumWidgetView so that it becomes easier for

you to understand.

The first region/view is eventCountView that displays the number of

events that took place on a particular date. It resembles your small widget.

The next region is the one where two events are listed. The

eventDetail(with:) method is responsible to display that region. Each of

them can have its own tap target that takes users to its detail screen.

Chapter 4 Making Widgets Configurable and interaCtive

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

92

And below that region, there is a todayEvents view that displays the

number of remaining events that could not be accommodated in the

widget view, but are displayed when the app is launched.

You must have noticed that the only region which will have a tap target

that will perform a different function is the eventDetail(with:) method.

Otherwise, no matter where you tap in the medium widget, users are

supposed to be taken to the app’s homescreen displaying a list of events

related to the currently selected category. So, like in your small widget, you

can call widgetURL(_:) from one of your views of your medium widget.

Later, to add a tap target in the eventDetail(with:) method, you will use

some other way than widgetURL(_:).

Since you have already performed the setup necessary to handle

deep links during the “Addition of Tap Target in Small Widget” (step 5

onward), now you can simply call widgetURL(_:) from any view among

eventCountView and todayEvents to make things work. Let’s call

widgetURL(_:) from eventCountView. Listing 4-23 shows the addition of

the call to widgetURL(_:) in eventCountView.

Listing 4-23. Calling widgetURL(_:) from eventCountView

 var eventCountView: some View {

 HStack {

 VStack(alignment: .leading) {

 Text(events.count.description)

 .font(.system(size: 40,

 weight: .medium))

 .foregroundColor(.red)

 Text(category.detail)

 .font(.body)

 Text("took place on")

 .font(.body)

Chapter 4 Making Widgets Configurable and interaCtive

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

93

 Text(DateHelper.today + ".")

 .font(.headline)

 }

 }

 .padding(.trailing)

 .widgetURL(URL(string: category.eventType.rawValue))

 }

In Listing 4-23, widgetURL(_:) was called in eventCountView by

passing the URL created using the string generated by accessing the

rawValue property of the eventType property of category, which is the

selected category.

After adding the code in Listing 4-23, build and run the widget. Now,

if you tap anywhere in the medium widget, you will get taken to the app’s

homescreen that lists the events related to the selected category.

However, if you remember, the region that displays brief information

about two events at the right side of the widget is supposed to take users

to their detail screens in the app to provide more relevant information. It’s

time to set it up.

In the case of the small widget, all you needed for the app to display

the list of events of a selected category was the name of the selected

category itself. And you created a URL using that category name and set it

via widgetURL(_:). When the widget was tapped, onOpenURL(perform:)

would detect the deep link and the app would get launched and the

homescreen with the list was displayed.

But you need a different mechanism to handle the case when an event

is tapped in the medium (or large) widget, and the app should launch to

open the detail screen of that particular event. Unlike in the small widget,

here, you require both the event information (which will be used for the

detail screen) and the selected category (which will be used to display the

list of events of that particular category when users decide to go back to the

app’s homescreen).

Chapter 4 Making Widgets Configurable and interaCtive

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

94

As you will use deep linking for this case too, you will surely have to

create a URL. So, why not generate a URL that will not only contain the

selected category but also the text of the event? And to make the app sure

about the screen it should navigate to when that particular deep link is

detected, why not include some information about that screen too? It may

not be very useful currently, but in scenarios where your app may have

deep links for navigating to various screens, it can surely come handy.

So, let’s create a mechanism that generates the URL containing the

information about the selected category, the text of the event, and the

name of the screen the app should navigate to:

 1. In the OnThisDayWidget folder, create a new folder,

Constants.

 2. In Constants, create a new Swift file named

LinkConstants.swift. While creating

that file, make sure both OnThisDay and

OnThisDayWidgetExtension targets are checked.

 3. Copy the code in Listing 4-24 and paste it in

LinkConstants.swift.

Listing 4-24. Creating a LinkConstants struct

struct LinkConstants {

 // a

 static let detailScheme = "detail"

 // b

 static func detail(with text: String, category: Categories)

-> URL? {

 // c

 let queryItem = URLQueryItem(name: "text", value: text)

Chapter 4 Making Widgets Configurable and interaCtive

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

95

 // d

 var urlComponents = URLComponents()

 urlComponents.scheme = Self.detailScheme

 urlComponents.host = category.eventType.rawValue

 urlComponents.queryItems = [queryItem]

 // e

 if let url = urlComponents.url {

 return url

 }

 return nil

 }

}

In Listing 4-24, the LinkConstants struct is created,

and the following things take place in it:

 a. A static property, detailScheme, is defined, and

its value is set to "detail". You will use this

property to let the app know that the deep link

wants it to navigate to the detail screen of an

event.

 b. A static detail(with:category:) method is

created. It is where your URL will be generated.

 c. A URLQueryItem with its name parameter, text,

and its value parameter set to the text received

as an argument from detail(with:category:)

is defined and stored in queryItem.

 d. By creating an instance of URLComponents and

storing it in urlComponents, the work of creating

a URL is started here. The scheme is set to

detailScheme, the host is set to the string form

Chapter 4 Making Widgets Configurable and interaCtive

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

96

of category, and queryItems is set to an array

containing the queryItem variable you created

in step “a.”

 e. Using if-let, it is checked if a valid URL

has been generated or not. If a valid URL is

generated, it is stored in url and returned.

Else, the method returns nil. A sample

of the URL that is created is detail://

births?text=Cory%20Paix,%20Australian%20

rugby%20league%20player.

In this way, you have developed a mechanism to generate URLs using

the selected category, the text of the event, and the destination screen’s

name.

Now, let’s use the detail(with:category:) method you just created in

LinkConstants and also set up the view of the medium widget for enabling

navigation:

 1. Open MediumWidgetView and replace todayEvents

with the code given in Listing 4-25.

Listing 4-25. todayEvents with the Link view

var todayEvents: some View {

 VStack(spacing: 0) {

 ForEach(events.prefix(2)) { event in

 // a

 if let url = LinkConstants.detail(with: event.text,

category: category) {

 Link(destination: url, label: {

 eventDetail(with: event)

 })

Chapter 4 Making Widgets Configurable and interaCtive

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

97

 } else {

 eventDetail(with: event)

 }

 }

 if events.count > 2 {

 HStack {

 Spacer()

 Text("\(events.count - 2) more")

 .font(.footnote)

 .padding(.trailing)

 .padding(.bottom, 8)

 }

 }

 }

 }

In Listing 4-25, a URL is generated by using

the static detail(with:category:) method

of LinkConstants and passing the text of the

current iteration of events, that is, event, and

the currently selected category, that is, category.

If detail(with:category:) returns a valid

URL, it is stored in url, and a Link view with

its destination set to url and label set to the

eventDetail(with:) method is created. Hence,

the views that display brief information about

events become tappable links to the URLs you

generate. If detail(with:category:) does not

generate a valid URL, just the view generated by the

eventDetail(with:) method is displayed.

Chapter 4 Making Widgets Configurable and interaCtive

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

98

Tip You can check if the Link view is working or not by setting
a breakpoint inside the onOpenURL(perform:) method in
HomeView. then, build and run the project and add the medium
widget in your simulator or device’s homescreen. after the updated
information gets loaded in the widget, tap on any event and your
app will launch, and the breakpoint will pause the execution inside
onOpenURL(perform:). now check the deep link url that passed
by typing po url in Xcode’s Debug Console. if the url that is
printed contains the data related to the event that you had tapped, it
can be concluded that the Link view is working.

 2. Open HomeView and define two State variables,

deepLinkEvent of EventData? type and

deepLinkActive of Bool type. Listing 4-26 shows the

code that does it.

Listing 4-26. Defining deepLinkEvent and deepLinkActive

@State var deepLinkEvent: EventData?

@State var deepLinkActive: Bool = false

The deepLinkEvent variable defined in Listing 4-26

will be used later to store the data of the event

that was tapped in the widget. Likewise, the

deepLinkActive variable declared in Listing 4-26 will

be used to activate/deactivate the NavigationLink

responsible for navigation to an event’s detail screen.

You will add it later.

Chapter 4 Making Widgets Configurable and interaCtive

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

99

 3. Let’s create a method handleLinkForDetail(with:)

in HomeView to handle operations related only to the

navigation to an event’s detail screen when a deep

link is detected. Do it using the code given in

Listing 4-27.

Listing 4-27. Creating handleLinkForDetail(with:)

func handleLinkForDetail(with url: URL) {

 // a

 guard let urlScheme = url.scheme,

 urlScheme == LinkConstants.detailScheme else {

return }

 // b

 guard let urlType = url.host else { return }

 // c

 type = EventType(rawValue: urlType)!

 // d

 if let firstElement = url.queryParams.first {

 for eventType in otdViewModel.events {

 for event in eventType.value where event.text

== firstElement.value {

 deepLinkEvent = event

 deepLinkActive = true

 }

 }

 }

 }

Chapter 4 Making Widgets Configurable and interaCtive

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

100

In Listing 4-27, the following things are happening:

 a. handleLinkForDetail(with:) receives a URL as

an argument and stores it in url. Using guard-let,

it is checked if url contains a scheme or not. If a

scheme is present, it is stored in urlScheme, and

a check is performed if urlScheme matches with

LinkConstants.detailScheme (whose value is

"detail") or not. This helps to verify if the deep link

is meant to make the app navigate to a detail screen

or not (we had talked about this in the step “a” of the

explanation of Listing 4-24). Otherwise, the method

will return and do nothing.

 b. In this step, it is checked if url contains a host or

not. If it contains a host, it is stored in urlType;

otherwise, the method will return and do nothing.

You have set up the URL in such a way that urlType

will contain the string value of the selected event

category.

 c. Now, the value of urlType is passed to the

EventType initializer to convert it into an EventType

case. Since you can be sure that a String that can

be converted into an EventType case has been

passed, you can force-unwrap the result using the

bang operator (!) and store it in type that stores the

selected event category/event type and displays the

events accordingly.

 d. In this step, only the first query parameter passed

in url is extracted using if-let, as you had passed

only one query parameter containing the text of the

event.

Chapter 4 Making Widgets Configurable and interaCtive

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

101

Now since firstElement contains the text of the

event tapped, you can match it with the texts of the

events variable of otdViewModel to find out the

event data of that tapped event. These event data

can then be used to initiate navigation to the detail

page of the tapped event. The events variable is

where the app stores all the events after fetching

them using the API.

So, a for loop is run through the events variable

of otdViewModel, setting the iteration variable to

eventType. Again, another for loop is run through

eventType.value to find out the text of the event

that matches with the text of firstElement. As

soon as an event is found, its value is stored in

deepLinkEvent, which will make the value available

throughout HomeView. And the deepLinkActive flag

is set to true as it is verified that this is a valid deep

link operation to navigate to the detail page.

 4. Now it’s time to call the

handleLinkForDetail(with:) method you just

created. Since the operations related to deep linking

are mainly handled by the handleLinks(for:)

method in HomeView, go there and replace it using

the code in Listing 4-28 to give handleLinks(for:)

some more responsibilities.

Chapter 4 Making Widgets Configurable and interaCtive

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

102

Listing 4-28. handleLinks(for:) with added responsibilities

func handleLinks(for url: URL) {

 deepLinkEvent = nil

 deepLinkActive = false

 if let type = EventType(rawValue: url.absoluteString) {

 self.type = type

 } else {

 handleLinkForDetail(with: url)

 }

 }

Listing 4-28 contains the updated version of the

handleLinks(for:) method. No matter what url

is received, initially, deepLinkEvent is set to nil

and deepLinkActive is set to false. Then, if url

contains a String that can be converted into an

EventType case, it is stored in the type variable.

After that, the value of the type variable is stored in

the type variable of HomeView, which is responsible

to set the selected event category/event type and

display the event list accordingly in the homescreen.

You had previously used this condition for the small

widget and for some portion of the medium widget.

But if url does not contain such a String, then it is

deduced that it is time to handle the deep link for

navigating to the detail screen of an event. Hence,

in the else condition, handleLinkForDetail(with:

url) is called.

Chapter 4 Making Widgets Configurable and interaCtive

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

103

 5. Now, the last thing remaining is to create a

NavigationLink that gets activated and deactivated

according to the deepLinkActive state variable

of HomeView. When it gets activated, the app

automatically navigates to the detail screen

of an event. For that, create a variable named

navigateToDetail by using the code given in

Listing 4-29.

Listing 4-29. Defining the navigateToDetail variable

var navigateToDetail: some View {

 return self.deepLinkEvent.map({ event in

 NavigationLink(destination: DetailView(event:

event), isActive: $deepLinkActive) {

 EmptyView()

 }.hidden()

 })

 }

In Listing 4-29, the navigateToDetail variable is

created, whose function is to return some View. It

first checks if a deepLinkEvent value is available

or not by running map, and if the value exists,

a NavigationLink with its destination set to

DetailView, along with event data, and its isActive

parameter set to $deepLinkActive, is created.

Here, the “$” sign before deepLinkActive indicates

that it is a binding. So, if there occurs any kind of

change in deepLinkActive’s value, then the whole

body of HomeView automatically gets reloaded, and

hence if deepLinkActive’s value becomes true, the

NavigationLink navigates to its destination, that is,

Chapter 4 Making Widgets Configurable and interaCtive

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

104

DetailView. Also, the label of NavigationLink is

an EmptyView() and the whole NavigationLink

is hidden() as you do not want it to be visible

anywhere on screen but just want it to work.

 6. For a NavigationLink to work, it must be wrapped

inside a NavigationView. So, the last step would be

to somehow wrap navigateToDetail, which stores

your NavigationLink, to the NavigationView in

the body of HomeView. So, make navigateToDetail

the background of the List wrapped by

NavigationView in the body of HomeView. It is shown

in Listing 4-30.

Listing 4-30. Setting navigateToDetail as the background of List in

the body of HomeView

var body: some View {

 NavigationView {

 List {

 if type == .all {

 eventListWhenAllChecked

 } else {

 Group { eventView(for: type) }

 }

 }

 .background(navigateToDetail)

 .navigationTitle("On This Day")

 .navigationBarItems(leading: Text("\(today?.month ??

"JANUARY") \(today?.day ?? 1)")

 .fontWeight(.semibold)

 .font(.body)

Chapter 4 Making Widgets Configurable and interaCtive

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

105

 .foregroundColor(.red),

 trailing: TrailingNavView(homeView: self))

 }

 .alert(isPresented: $isAlertDisplayed,

 content: {

 Alert(title: Text("Oops!"),

 message: Text("An error occurred. Please

try reloading the data."),

 dismissButton: .cancel(Text("OK")))

 })

 .onAppear(perform: initiateDataFetch)

 .onOpenURL { url in

 handleLinks(for: url)

 }

}

If you see in Listing 4-30, exactly after the closing

brace of List, .background(navigateToDetail)

has been added to make navigateToDetail its

background. In this way, you have successfully

wrapped the NavigationLink stored by

navigateToDetail in the NavigationView of

HomeView’s body.

 7. Finally, build and run the project and tap any

event of the medium- sized widget to see the app

launching and automatically navigating to the detail

page of that particular event. If you tap the Back

button, you will see the list of events related to the

selected category only, in the homescreen of the

app.

Chapter 4 Making Widgets Configurable and interaCtive

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

106

With this, you have completed adding a tap target in your medium

widget. Now, the only widget where you have not set up tap targets is the

large widget. You will do that in the upcoming section.

 Addition of Tap Target in Large Widget
In the previous sections, you have already performed the setup necessary

to create and handle deep links. That makes adding tap targets in your

large widget easier. The only file you will modify now is LargeWidgetView

to make tap targets in it work.

As LargeWidgetView is quite similar to MediumWidgetView, the first

thing you can do is call the widgetURL(_:) method. This will create a

tap target throughout the view that will make navigation to the app’s

homescreen that displays a list of events of the selected category. Replace

the body of LargeWidgetView with the code given in Listing 4-31.

Listing 4-31. Calling widgetURL(_:) from LargeWidgetView’s body

var body: some View {

 VStack(alignment: .leading, spacing: 0) {

 today

 Divider().padding(.vertical, 4)

 count

 todayEvents

 Spacer()

 }

 .padding(8)

 .widgetURL(URL(string: category.eventType.rawValue))

 }

Listing 4-31 modifies the body of LargeWidgetView by adding a call to

widgetURL(_:). The URL passed as an argument is created by using the

String rawValue of the eventType property of category. Since you have

Chapter 4 Making Widgets Configurable and interaCtive

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

107

set up everything to handle this deep link, if you build and run the project

and you tap anywhere in the large widget, the app will launch and display

a list of events of the selected category.

Now to add the feature to navigate to the detail screen of an event

listed in the widget, you have to make modifications in todayEvents.

Firstly, create a method eventDetail(with:) in LargeWidgetView by using

the code given in Listing 4-32.

Listing 4-32. Creating eventDetail(with:)

func eventDetail(with event: WidgetEventData) -> some View {}

Listing 4-32 creates an eventDetail(with:) method that returns some

View. Now, go to todayEvents and cut its HStack (everything inside the

ForEach loop), and paste it in eventDetail(with:) to make it look like the

code given in Listing 4-33.

Listing 4-33. Adding code to eventDetail(with:)

func eventDetail(with event: WidgetEventData) -> some View {

 HStack(spacing: 0) {

 Color.init(UIColor.systemYellow)

 .frame(width: 4)

 .padding(.vertical, 12)

 VStack {

 Text("\(event.text)")

 .font(.caption)

 .padding(.trailing, 8)

 .frame(maxWidth: .infinity, alignment: .leading)

 }.padding(8)

 }

 }

Chapter 4 Making Widgets Configurable and interaCtive

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

108

Listing 4-33 creates an eventDetail(with:) method that returns an

HStack. If you look at the code of todayEvents now, you will see only the

code shown in Listing 4-34.

Listing 4-34. The remnants of todayEvents

var todayEvents: some View {

 VStack(spacing: 0) {

 ForEach(events.prefix(3)) { event in

 // HStack was here

 }

 if events.count > 3 {

 HStack() {

 Spacer()

 Text("\(events.count - 3) more")

 .font(.footnote)

 .padding(.trailing)

 }

 }

 }

 }

The line where HStack existed previously has been marked with the

comment, // HStack was here, in Listing 4-34. Now, replace the line that

says // HStack was here with the code given in Listing 4-35.

Chapter 4 Making Widgets Configurable and interaCtive

109

Listing 4-35. The code that replaces the HStack

if let url = LinkConstants.detail(with: event.text, category:

category) {

 Link(destination: url) {

 eventDetail(with: event)

 }

 } else {

 eventDetail(with: event)

 }

You had used the code in Listing 4-35 in MediumWidgetView

too. The given code checks if a valid URL has been generated or

not by passing event.text and category to the LinkConstants.

detail(with:category:) method and by unwrapping the value

returned by that method using an if-let. If a valid URL is generated, it

is stored in url, and a Link with destination set to url wraps the call

to eventDetail(with:) that is responsible to generate the HStack that

displays the event details. Otherwise, only the eventDetail(with:)

method is called.

Now, if you run the project and test your large widget, you will see

that if you tap on any event, you get taken to its detail screen. And if you

tap Back from a detail screen, the app displays the homescreen listing the

events of the selected category.

In this way, you have successfully added tap targets in your large

widget. Well done!

Chapter 4 Making Widgets Configurable and interaCtive

110

 Summary
And you made it! In this chapter, you learned how you can make your

widgets configurable and interactive to make your widgets more

user-friendly. You used IntentConfiguration to make your widgets

configurable, added tap targets in them, and used deep links to make

navigation to the different screens of your app possible. In case of any

confusion, do check out the final version of the code by opening the final

project folder named OnThisDayFinal in OnThisDay.zip.

This chapter taught how you can provide hard-coded data to your

widget’s configuration. In the upcoming chapter, you will move a level

ahead and provide dynamic data (fetched from an API) to your widget’s

configuration and make your widget even more powerful. Sounds exciting

enough? Just keep going forward!

Chapter 4 Making Widgets Configurable and interaCtive

Author Queries
Chapter No.: 4 0005120289

Queries Details Required Author’s Response

AU1 Please check if all instances of “occured” in the code should be
changed to “occurred”.

AU2 Please check if “Tapping your widget should open your app at the
right location” is correct as is.

AU3 Please check if “and make the changes” is correct as edited.

111© Sagun Raj Lage and Prakshapan Shrestha 2021
S. R. Lage and P. Shrestha, Getting Started with WidgetKit,
https://doi.org/10.1007/978-1-4842-7042-4_5

CHAPTER 5

Fetching
Configuration Options
If you have made it to this chapter of the book, then till now you have

gained an idea about how you can develop widgets of different sizes that

not only display static data but also have the capability to fetch fresh data

from a server at a specified interval. Also, you have learned how you can

add tap targets to your widgets and also make your widgets configurable.

By following the procedure given in the previous chapter, you

developed widgets that offered users a list of hard-coded configuration

options, using which they configured their widgets. To be more specific, in

the OnThisDay app’s widgets, users could select a category of events from

the widgets’ configuration screen and, hence, make the widgets display

event information related only to that particular category. You hard-coded

all those categories which users could choose from. That is where the

difference between that chapter and this chapter lies.

In this chapter, you will learn how you can fetch data from a server so

that you can use those data as configuration options for the parameter in

your configurable widgets. If you apply what you learned in this chapter to

the OnThisDay app, you will be able to replace the category options you

had previously hard-coded, with dynamic category options fetched from a

server.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

https://doi.org/10.1007/978-1-4842-7042-4_5#DOI

112

Now, we understand that you must have been fed up with working on

the same app for a long time. So, in this chapter, you will work in a new

app, TwitterTrends (our friends who love Twitter are gonna enjoy this).

 Getting Started
To begin working on TwitterTrends, unzip the file named

TwitterTrends.zip, and from the TwitterTrendsStarter folder, open

TwitterTrends.xcodeproj. As this project needs to use Twitter’s API

endpoints, it is necessary to generate a bearer token. You have to pass

that bearer token in the header of each request/API call, and Twitter

checks that bearer token for authentication. If a valid bearer token is

passed, Twitter sends a response with the data you request. Otherwise,

Twitter will not give you access.

If you already own a Twitter Developer Account, you should be able to

generate your own bearer token. But in case you do not own a developer

account, you will first have to apply for it from Twitter’s developer account

page.1 Generally, it takes a day or two, or sometimes even more, for Twitter

to review your application.

If your Twitter Developer Account is ready to use, generate your

own bearer token by going through the article at this link.2 Then, open

TwitterTrendsAPI.swift in the TwitterTrends folder of the project and

replace the string that says, “Your bearer token here,” with your bearer

token string. Finally, you are ready to run the app.

Now, select the TwitterTrends scheme and run the project to see a

screen similar to the screenshot shown in Figure 5-1.

1 https://developer.twitter.com/en/apply-for-access
2 https://developer.twitter.com/en/docs/authentication/oauth-2-0/
bearer-tokens

Chapter 5 FetChing ConFiguration options

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

https://developer.twitter.com/en/apply-for-access
https://developer.twitter.com/en/docs/authentication/oauth-2-0/bearer-tokens
https://developer.twitter.com/en/docs/authentication/oauth-2-0/bearer-tokens

113

Figure 5-1 shows the TwitterTrends app’s homescreen displaying a

list of top trends trending worldwide on Twitter. TwitterTrends does this

by making use of Twitter’s GET trends/place3 API endpoint. If you play

with the app, you will see that you can tap each trend to get taken to a

screen that displays tweets related to that trend (Figure 5-2).

3 https://developer.twitter.com/en/docs/twitter-api/v1/trends/
trends-for-location/api-reference/get-trends-place

Figure 5-1. The homescreen of TwitterTrends displaying a list of
trends trending worldwide on Twitter

th
is

 fi
gu

re
 w

ill
 b

e
pr

in
te

d
in

 b
/w

Chapter 5 FetChing ConFiguration options

47

48

49

50

51

https://developer.twitter.com/en/docs/twitter-api/v1/trends/trends-for-location/api-reference/get-trends-place
https://developer.twitter.com/en/docs/twitter-api/v1/trends/trends-for-location/api-reference/get-trends-place

114

Figure 5-2 shows the screen with a list of tweets which was shown after

the #FarmersProtest trend was tapped in TwitterTrends’ homescreen.

The list of tweets has been fetched by using Twitter’s GET search/tweets4

API endpoint.

4 https://developer.twitter.com/en/docs/twitter-api/v1/tweets/search/
api-reference/get-search-tweets

Figure 5-2. TwitterTrends displaying a list of tweets about the trend
“#FarmersProtest”

th
is

 fi
gu

re
 w

ill
 b

e
pr

in
te

d
in

 b
/w

Chapter 5 FetChing ConFiguration options

52

53

54

55

https://developer.twitter.com/en/docs/twitter-api/v1/tweets/search/api-reference/get-search-tweets
https://developer.twitter.com/en/docs/twitter-api/v1/tweets/search/api-reference/get-search-tweets

115

To sum up, TwitterTrends lets users know about the top Twitter trends

and also fetches the tweets related to those trends. But wait, did you

check out the widget of TwitterTrends? TwitterTrends has a large widget

(Figure 5-3) that displays the tweets related to the first trend of the array

returned as a response by Twitter’s GET trends/place API endpoint.

Figure 5-3. Large-sized widget of TwitterTrends

th
is

 fi
gu

re
 w

ill
 b

e
pr

in
te

d
in

 b
/w

Chapter 5 FetChing ConFiguration options

56

57

58

59

60

116

In Figure 5-3, you can see how the large widget of TwitterTrends looks.

The large widget is the only widget family that TwitterTrends has. At the

top of the widget, the name of the trend is displayed. Below that, the tweets

related to that trend are listed, along with some more information about

each tweet. If there are more than three tweets, a Text that displays the

number of tweets that could not be accommodated in the widget is shown.

Right now, if you try to edit the widget and configure it, you will see

that there exists no option to do that. But in the upcoming sections, you

will make your app configurable (Figure 5-4). Users will be able to choose

a trend from a list of trends fetched from Twitter’s API endpoint (and not a

list of hard-coded trends), and the widget will then display tweets related

to that trend. This is what makes this chapter different from the previous

one – fetching configuration options from a server and not hard-coding

them.

Chapter 5 FetChing ConFiguration options

61

62

63

64

65

66

67

68

69

70

71

72

73

74

117

Figure 5-4 displays the configuration screen of TwitterTrends’ widget

that you will develop in the upcoming sections. The configuration screen

consists of a parameter, Selected Trend, which is currently asking users

to Choose a trend since no trend has been selected yet. After tapping

Choose, users will see a screen that lists the Twitter trends trending

worldwide (Figure 5-5). Those trends will be fetched from Twitter’s GET
trends/place API endpoint.

Figure 5-4. The configuration screen of TwitterTrends’ widget

th
is

 fi
gu

re
 w

ill
 b

e
pr

in
te

d
in

 b
/w

Chapter 5 FetChing ConFiguration options

75

76

77

78

79

80

81

118

From the screen shown in Figure 5-5, users can choose any one of

the trends, and then the widget will display tweets related to that selected

trend.

Doesn’t that sound fun? Now let’s take a look at the already existing

code. We have already set up some basic stuff for you in TwitterTrends.

Figure 5-5. The trends users can choose from to set as the “Selected
Trend”

th
is

 fi
gu

re
 w

ill
 b

e
pr

in
te

d
in

 b
/w

Chapter 5 FetChing ConFiguration options

82

83

84

85

86

119

If you go to the Project Navigator and open the TwitterTrends

project, you will see two main folders, that is, TwitterTrends and

TwitterTrendsWidget. The TwitterTrends folder contains the files and

folders related to the app, and the TwitterTrendsWidget folder contains

the files and folders related to the widget. And there are certain files which

are shared by both folders using Target Membership.

If you open the TwitterTrends folder in the TwitterTrends project,

you will see the following folder structure:

TwitterTrends

├── Assets.xcassets

├── Extensions

│ └── View.swift

├── Info.plist

├── Models

│ ├── TrendTweets.swift

│ ├── Trends.swift

│ └── Tweets.swift

├── Preview\ Content

├── TwitterTrendsAPI.swift

├── TwitterTrendsApp.swift

├── ViewModel

│ └── TTViewModel.swift

└── Views

 ├── TrendsView.swift

 └── TweetsView.swift

In the TwitterTrends folder, other than Assets.xcassets and Info.plist,

you will see the Extensions folder that contains a file named View.swift. It

contains an extension of View that helps to handle the redacted(reason:)

view modifier.

Chapter 5 FetChing ConFiguration options

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

120

The Models folder contains TrendTweets.swift, Trends.swift, and

Tweets.swift, which are the models used for decoding the response data

received from Twitter’s API. These files are used by both the app and the

widget.

The Preview Content folder is a folder generated automatically by

Xcode for storing the assets required for development purposes. Xcode

does not include any assets in this folder in your release builds.

The next file is TwitterTrendsAPI.swift. It is responsible to handle

communications with Twitter’s API endpoints. This file is used by both the

app and the widget to fetch tweets and trends from Twitter.

There is a file named TwitterTrendsApp.swift which is the entry point

of the app.

Now, the only folders remaining are ViewModel and Views. The

ViewModel folder consists of TTViewModel.swift, which contains the

view model used by the app. And Views contains TrendsView.swift and

TweetsView.swift which contain the user interface of the screens that

display the top trends and the tweets related to those trends, respectively.

That’s the description of the folders and files in the TwitterTrends folder.

There is another folder called TwitterTrendsWidget in the project. If

you open it, you will see the folder structure given as follows:

TwitterTrendsWidget

├── Assets.xcassets

├── Info.plist

├── Model

│ └── TweetWidgetEntry.swift

├── Provider

│ └── TwitterProvider.swift

├── View

│ └── LargeWidgetView.swift

└── Widget

 └── TwitterTrendsWidget.swift

Chapter 5 FetChing ConFiguration options

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

121

Currently, there are less files and folders in TwitterTrendsWidget. In

addition to Assets.xcassets and Info.plist, there is a folder called Model
that contains TweetWidgetEntry.swift. This file contains a TimelineEntry

called TweetWidgetEntry which is vital for your widgets to work.

The Provider folder contains TwitterProvider.swift, which is the

TimelineProvider of the widget.

Likewise, you can see another folder, View. It contains

LargeWidgetView.swift, which contains the user interface of your widget.

Lastly, there is a folder called Widget, and it contains

TwitterTrendsWidget.swift. It is the entry point of your widget.

Throughout this chapter, you will add more files and folders in your

widget’s folder and give your widget the power to fetch configuration

options from a remote server.

Now, it’s finally time to start working to give your widget the capability

to communicate with Twitter’s API to fetch the top trends and allow users

to select any one of them to see the tweets related to that particular trend

in the widget.

 Time to Create a SiriKit Intent Definition File
This step is similar to that of the previous chapter. In this step, you

will create an intent definition file, and using that file you will define

configurable properties for your widgets. To create that file, follow the steps

mentioned as follows:

 1. Right-click the TwitterTrendsWidget folder in the

project and click New Group to create a new folder.

Name it Intent.

 2. Now, right-click the Intent folder and click New
File….

Chapter 5 FetChing ConFiguration options

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

122

 3. In the dialog box that appears, select SiriKit
Intent Definition File, name it TwitterTrends.
intentdefinition, and create the file. While

creating the file, make sure that both

TwitterTrendsWidgetExtension and TwitterTrends

targets are checked at the bottom of the dialog box.

 4. Open TwitterTrends.intentdefinition and click the

“+” icon at the bottom left of the intent file. After that,

from the list of options, click New Intent (Figure 5-6).

Figure 5-6. Creating a new intent in the intent definition file

th
is

 fi
gu

re
 w

ill
 b

e
pr

in
te

d
in

 b
/w

Chapter 5 FetChing ConFiguration options

174

175

176

177

178

179

180

181

182

123

 5. Name the intent as Trends and modify some

configuration of that intent. Since you are going to

use the intent for widgets only, put a checkmark

on Intent is eligible for widgets and remove

checkmarks from Intent is user-configurable in the
Shortcuts app and Add to Siri and Intent is eligible
for Siri Suggestions.

 6. Now, add a parameter named selectedTrend in

the Parameters section by clicking the “+” button

below it. Parameters are the properties that users

will see and modify in the configuration screen of

your widget to configure your widget. The display

name that is displayed in the configuration screen

of your widget (Figure 5-4) is automatically set to

Selected Trend.

 7. Then, change the type of the selectedTrend

parameter to Add Type… (Figure 5-7).

Figure 5-7. Creating a parameter called “selectedTrend” and
changing its “Type” to “Add Type…”

th
is

 fi
gu

re
 w

ill
 b

e
pr

in
te

d
in

 b
/w

Chapter 5 FetChing ConFiguration options

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

124

 8. As soon as you click Add Type…, a new screen is

displayed that appears similar to Figure 5-8. Change

the name of the new type to SelectedTrend by typing

it in the item under the TYPES header at the left.

 9. Again, go back to the Trends custom intent and select

the selectedTrend parameter and add a checkmark

in Options are provided dynamically as you want

to provide options for that parameter dynamically by

fetching them from a remote server. Also, remove the

checkmark from Siri can ask for value when run since

you do not want to work with Siri.

In this way, you have created an intent definition file and added the

parameter, selectedTrend, using which users will select a trend of their

choice from the widget’s configuration screen.

Figure 5-8. The screen shown after clicking “Add Type.”

th
is

 fi
gu

re
 w

ill
 b

e
pr

in
te

d
in

 b
/w

Chapter 5 FetChing ConFiguration options

200

201

202

203

204

205

206

207

208

209

210

211

212

213

125

 Setting Up IntentHandler to Fetch Top
Trends and Send Them to the Widget
Now, you have to add a mechanism to use selectedTrend parameter when

the timeline is created. In the previous chapter, it was a straightforward

and simple process, as you had an enum with a set of values you had

defined or hard-coded. But this time, you are using a class, and things are

going to be different.

So, first, you need to provide the widget the values that the

selectedTrend parameter of SelectedTrend type can hold. For that, you

will require an intent handler that will be responsible to fetch those values

from the server and provide them to your widget.

 1. In Xcode, go to File ➤ New ➤ Target to create a new

target. In the dialog box that appears, select Intents
Extension and click Next.

 2. In the dialog box displayed, set

TwitterTrendsIntent as Product Name, Swift as

Language, and None as Starting Point. Make sure

that Include UI Extension is not checked. And set

Project to TwitterTrends and the value of Embed
in Application to TwitterTrends. Then, click

Finish. And click Cancel if you are asked to Activate
“TwitterTrendsIntent” scheme because you will

not have to activate that scheme to run your widget

or app later.

Now, a new folder called TwitterTrendsIntent is

created in your project, and it contains IntentHandler.
swift and Info.plist. The IntentHandler.swift file is

where you will write the code to fetch the top trends

from Twitter’s server and send them to your widget.

Chapter 5 FetChing ConFiguration options

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

126

 3. Now, open the TwitterTrends.intentdefinition file

in TwitterTrendsWidget’s Intent folder and update

its Target Membership by adding a checkmark to

TwitterTrendsIntent. Now, that file is accessible

from TwitterTrends, TwitterTrendsWidget, and

TwitterTrendsIntent.

 4. One thing to keep in mind is that the

TwitterTrendsIntent target should know the types of

intents it can support. For that, select the TwitterTrends

project (and not the TwitterTrends folder) located at the

top of the Project Navigator to go to project settings.

Now, select the TwitterTrendsIntent target under the

TARGETS section and go to its General tab.

 5. In the General tab of TwitterTrendsIntent, go to the

Supported Intents section and click the “+” sign below

it to add a new supported intent. Then the screen will

look like Figure 5-9.

Figure 5-9. The screen shown after clicking the “+” icon below
Supported Intents

th
is

 fi
gu

re
 w

ill
 b

e
pr

in
te

d
in

 b
/w

Chapter 5 FetChing ConFiguration options

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

127

 6. Type TrendsIntent under the Class Name

heading. Since you have made TwitterTrends.
intentdefinition a member of the

TwitterTrendsIntent target in step 3, you will see a

suggestion as soon as you begin typing. The name

TrendsIntent has been generated automatically by

Xcode using the name of the custom intent, Trends,

you had added in TwitterTrends.intentdefinition

in step 5 of Creating and Configuring SiriKit
Intent Definition File. At last, let TrendsIntent’s

Authentication remain None.

 7. Now, open IntentHandler.swift in the

TwitterTrendsIntent folder. Right now, the

IntentHandler class is inheriting from the

INExtension class. Now make IntentHandler

conform to the TrendsIntentHandling protocol that

has been generated automatically by Xcode. After

doing that, your code in IntentHandler.swift will

look like Listing 5-1.

Listing 5-1. IntentHandler after conforming to

TrendsIntentHandling

import Intents

class IntentHandler: INExtension, TrendsIntentHandling {

 override func handler(for intent: INIntent) -> Any {

 return self

 }

}

AU1

Chapter 5 FetChing ConFiguration options

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

128

 8. As soon as you make IntentHandler conform to

TrendsIntentHandling, Xcode will show you an

error message saying, “Type ‘IntentHandler’ does

not conform to protocol ‘TrendsIntentHandling’.

Do you want to add protocol stubs?” It is because

you have not yet implemented the properties of the

TrendsIntentHandling protocol in IntentHandler.

 9. Click Fix to see Xcode generate the implementation

of provideSelectedTrendOptionsCollection(for:

with:). This is where you will fetch top Twitter

trends by communicating with its servers using

TwitterTrendsAPI. But TwitterTrendsAPI is not

currently accessible from IntentHandler.swift. So,

you need to update its Target Membership.

 10. Open TwitterTrendsAPI.swift in the TwitterTrends

folder. Then, update its Target Membership by

adding a checkmark to TwitterTrendsIntent. Now

you will be able to access it from IntentHandler.
swift.

 11. Open IntentHandler.swift and implement provide

SelectedTrendOptionsCollection(for:with:) by

replacing the current implementation with the code

given in Listing 5-2.

Listing 5-2. Implementation of

 provideSelectedTrendOptionsCollection(for:with:)

func provideSelectedTrendOptionsCollection(for intent:

TrendsIntent, with completion: @escaping (INObjectCollection

<SelectedTrend>?, Error?) -> Void) {

 // a

Chapter 5 FetChing ConFiguration options

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

129

 TwitterTrendsAPI.getAvailableTrends { response in
 // b
 switch response {
 // c
 case .success(let trends):
 // d
 if let firstTrend = trends.first {
 // e
 let availableTrends = firstTrend.trends
 // f
 let usableTrends: [SelectedTrend] =

availableTrends.map { element in
 return SelectedTrend(identifier:

element.query, display: element.name)
 }
 // g
 let inObjectCollection: INObjectCollection

= INObjectCollection(items: usableTrends)
 completion(inObjectCollection, nil)
 }
 case .failure(let error):
 // h
 print(error.localizedDescription)
 }
 }
 }

After pasting the code of Listing 5-2, you must be

seeing a lot of errors. So, before describing what

is happening in Listing 5-2, first let’s get rid of the

errors. If you go through the error messages, you will

see that Xcode is complaining about being unable

to find the types Trends, TrendTweets, Trend, and

Tweets. It is because TwitterTrendsAPI is now a

Chapter 5 FetChing ConFiguration options

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

130

member of the TwitterTrendsIntent target also,

but the structs that it uses (TrendTweets, Trend,

and Tweets) are not the members of that target.

So, you need to make those structs members of

TwitterTrendsIntent.

From the Models folder of TwitterTrends,

open TrendTweets.swift and update its Target
Membership by putting a checkmark on

TwitterTrendsIntent. Repeat the same for Trends.
swift and Tweets.swift too.

 12. Now build your project to find all the errors gone.

Now, let’s get back to knowing what is happening in

Listing 5-2.

 a. Since the provideSelectedTrendOptions

Collection(for:with:) method is the location

from where you will fetch top Twitter trends and

pass them as the options of the selectedTrend

parameter, you begin the implementation by

calling the getAvailableTrends(id:completion:)

method of TwitterTrendsAPI.

 b. getAvailableTrends(id:completion:) returns

response using its completion handler. response

can either be .success or .failure. So, it is put

through a switch case.

 c. If response has a .success value, it contains trends

which is the data about the top trends.

 d. If you study the response format of Twitter’s

GET trends/place API endpoint, you will see that

it returns an array with a single object. That single

object is accessed using trends.first and stored

in firstTrend.

Chapter 5 FetChing ConFiguration options

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

131

 e. Now, all the trends that have been fetched are

stored in the trends property of firstTrend. So,

they are accessed using firstTrend.trends and

stored in availableTrends.

 f. Since you have defined the data type of the

selectedTrend parameter in TwitterTrends.
intentdefinition as SelectedTrend, now you will

have to convert the trends fetched from Twitter’s

API to that type. For that, map is run through all the

values in the availableTrends array, and each

iteration’s query and name are used to create a new

SelectedTrend instance. Then, they are stored

in the usableTrends array, which is an array that

stores SelectedTrend values.

 g. In this step, usableTrends is passed into the

INObjectCollection initializer and stored in

inObjectCollection. Then, the completion

handler is called by passing inObjectCollection

as an argument. This is how the top trends fetched

from Twitter’s server are sent to the selectedTrend

parameter of the widget.

 h. In case response contains .failure, then its error

property is accessed and printed into the console.

In this way, you fetched the trends from

Twitter’s API, converted them to the type

of the selectedTrend parameter you created

in TwitterTrends.intentdefinition, and passed

them to selectedTrend.

Chapter 5 FetChing ConFiguration options

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

132

 Switching to IntentConfiguration
Right now, if you build and run your project, you will see that long

pressing your widgets does not give the option to Edit Widget. It is

because you have still not made necessary preparations to replace

StaticConfiguration with IntentConfiguration. And to use

IntentConfiguration, you will need a different timeline provider than the

one you are using right now. Just follow the steps given to make “the big

switch” to IntentConfiguration.

 Create an IntentTimelineProvider
As mentioned previously, the first step to switch to IntentConfiguration

is to set up an IntentTimelineProvider. Go through the given steps to set

it up:

 1. Right-click the Provider folder of the

TwitterTrendsWidget folder, click New
File…, and create a new Swift file named

TwitterTrendsIntentProvider.swift. Make sure the

TwitterTrendsWidgetExtension target is checked at

the bottom of the dialog box before creating the file.

Note You could use the existing TwitterProvider.swift file instead
of creating TwitterTrendsIntentProvider.swift, but for better clarity,
we recommend you to create TwitterTrendsIntentProvider.swift.

 2. Open TwitterTrendsIntentProvider.swift and

replace the existing code content with the code

given in Listing 5-3.

Chapter 5 FetChing ConFiguration options

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

133

Listing 5-3. Creating TwitterTrendsIntentProvider that conforms to

IntentTimelineProvider

import SwiftUI

import WidgetKit

struct TwitterTrendsIntentProvider: IntentTimelineProvider {

}

 3. In Listing 5-3, a struct named

TwitterTrendsIntentProvider that conforms to

IntentTimelineProvider is created. As soon as

you add the code, Xcode will ask if you want to add

protocol stubs. Click Fix and add them to see two

typealiases, Entry and Intent, added to the struct.

 4. In TwitterTrendsIntentProvider, replace the type

placeholder of Entry with TweetWidgetEntry, a type

of timeline entry. Also, replace the type placeholder

of Intent with TrendsIntent, whose name was

generated from the custom intent, Trends, you had

created in TwitterTrends.intentdefinition.

Now your code should look like the code in Listing 5-4.

Listing 5-4. TwitterTrendsIntentProvider after adding Entry and

Intent types

import SwiftUI

import WidgetKit

struct TwitterTrendsIntentProvider: IntentTimelineProvider {

 typealias Entry = TweetWidgetEntry

 typealias Intent = TrendsIntent

}

Chapter 5 FetChing ConFiguration options

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

134

 5. You will still see Xcode asking you to add protocol

stubs. Add them too. Then, placeholder(in:),

getSnapshot(for:in:completion:), and getTimeline

(for:in:completion:) methods will get generated.

 6. For implementing the placeholder(in:) and

getSnapshot(for:in:completion:) methods of

TwitterTrendsIntentProvider, you can copy

the code from the placeholder(in:) and get

Snapshot(for:in:completion:) methods of

TwitterProvider in TwitterProvider.swift as the

same implementations will work.

 7. The getTimeline(for:in:completion:) method

of TwitterTrendsIntentProvider is different than

the getTimeline(in:completion:) method of

TwitterProvider as TwitterTrendsIntentProvider

conforms to IntentTimelineProvider, but

TwitterProvider conforms to TimelineProvider.

And the getTimeline(for:in:completion) method

of TwitterTrendsIntentProvider allows you to

access the data from the configuration of the widget.

In the current scenario, you will access the selected

trend from the widget’s configuration and use it to

perform the API call to fetch tweets related to that

selected trend. In case there isn’t a selected trend,

you will make the widget fetch the tweets related to

the first trend in the array of the trends fetched from

Twitter’s API. And you will do everything in getTime

line(for:in:completion:).

AU2

Chapter 5 FetChing ConFiguration options

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

135

Before you start working on getTimeline(for:in:

completion:), let’s first create a method, create

TimelineFromTweets(response:), to create a

timeline from the tweets that will be fetched from

the API. Then, you can call this method from

getTimeline(for:in:completion:). This will

make the code readable and easy to understand.

Copy the code given in Listing 5-5 and paste it in

TwitterTrendsIntentProvider.

Listing 5-5. Creating the createTimelineFromTweets(response:)

method

func createTimelineFromTweets(response: Result<TrendTweets,

Error>) -> Timeline<TweetWidgetEntry> {

 // a

 let currentDate = Date()

 // b

 let refreshDate = Calendar.current.date(byAdding:

.minute, value: 30, to: currentDate)!

 // c

 var entry = TweetWidgetEntry(date: refreshDate,

statuses: Tweets.dummyTweets, trendTitle: "")

 // d

 var timeline = Timeline(entries: [entry], policy:

.after(refreshDate))

 // e

 switch response {

 case let .success(tweets):

 // f

 entry = TweetWidgetEntry(date: refreshDate,

statuses: tweets.statuses, trendTitle: tweets.title)

Chapter 5 FetChing ConFiguration options

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

136

 timeline = Timeline(entries: [entry], policy:

.after(refreshDate))

 return timeline

 case let .failure(error):

 // g

 print(error.localizedDescription)

 return timeline

 }

 }

In Listing 5-5, you created a method createTimeline

FromTweets(response:) that has response as the

parameter and returns a timeline. In it, the following

things have been done:

 a. At the beginning, the current date is stored in

currentDate.

 b. Now, the date after adding 30 minutes to

currentDate is generated and stored in

refreshDate. You will use it later to set up the

widget’s refresh policy.

 c. In this step, the TweetWidgetEntry timeline

entry is created by passing refreshDate, dummy

tweets, and an empty title string to its initializer.

Then, it is stored in entry.

 d. Now a timeline is created using entry and by

setting the refresh policy to make the widget

request a new timeline after 30 minutes. In this

way, the timeline is created.

 e. As response may either have a .success value

or a .failure value, it is put through a switch

case. If response has a .success value, it uses

Chapter 5 FetChing ConFiguration options

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

137

tweets received with .success and creates a

new TweetWidgetEntry by using tweets’ title

and statuses properties. Then, the value of the

entry variable is replaced by this new entry.

And the value of the timeline variable is also

replaced with a new timeline created using the

new value of entry, and therefore the timeline

is returned.

 f. In case response contains .failure, the error

variable is accessed, and its value is printed into

the console. Also, since the method must return

a timeline, the timeline variable with dummy

tweets and empty title (that you created in steps

“c” and “d”) is returned.

 8. Now it’s time to start working in the getTimeline(

for:in:completion:) method. Replace the existing

getTimeline(for:in:completion:) method with the

code given in Listing 5-6.

Listing 5-6. Implementation of the getTimeline(for:in:completion:)

method

func getTimeline(for configuration: TrendsIntent, in context:

Context, completion: @escaping (Timeline<TweetWidgetEntry>) ->

Void) {

 // a

 if let trend = configuration.selectedTrend {

 let selectedTrend = Trend(name: trend.

displayString, query: trend.identifier!)

 TwitterTrendsAPI.getTweets(on: selectedTrend) {

response in

Chapter 5 FetChing ConFiguration options

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

138

 completion(createTimelineFromTweets(response:

response))

 }

 } else { // b

 TwitterTrendsAPI.getLatestTweets { response in

 completion(createTimelineFromTweets(response:

response))

 }

 }

 }

In Listing 5-6, the implementation of the getTime

line(for:in:completion) method is given. The

following things take place in Listing 5-6:

 a. This method checks for two cases – the

first is the case when there exists a value of

selectedTrend in configuration, and the

second one is the case when selectedTrend

does not contain any value. The selectedTrend

property is the parameter that you had created

in TwitterTrends.intentdefinition in the

previous sections of this chapter.

In the current step, the code checks if users have

already selected a trend from their configuration

screen. Thus, if users have selected a trend, meaning

that there exists a value in selectedTrend, it is stored

in trend, and a new instance of Trend is created by

using the trend’s displayString and identifier.

Then, the getTweets(on:completion:) method

of TwitterTrendsAPI is called to fetch the tweets

related to that trend. When a response is received,

Chapter 5 FetChing ConFiguration options

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

139

the completion handler of the getTimeline(for:in:

completion:) method is called by passing the call

to createTimelineFromTweets(response:) as its

argument.

The createTimelineFromTweets(response:)

takes the response received from the API call as

an argument, generates a timeline, and returns it.

At last, the completion handler of getTimeline(for:

in:completion:) uses that timeline, and a timeline is

created for the widget.

 b. But in case users have not selected any trend

(or there is no value in the selectedTrend

property of configuration), the

getLatestTweets(completion:) method of

TwitterTrendsAPI is called. This method first

fetches all the trends from Twitter’s API, selects

the first trend from the API’s response, fetches

the tweets related to that trend, and returns it

as response. On receiving the response, the

completion handler of the getTimeline(for:

in:completion:) method is called by passing

the call to createTimelineFromTweets

(response:) as its argument.

Then, the createTimelineFromTweets(response:)

uses the response received from the API call as an

argument, generates a timeline, and returns it.

At last, the completion handler of getTimeline(for:

in:completion:) uses that timeline, and a timeline

is created for the widget.

Chapter 5 FetChing ConFiguration options

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

140

In this way, you created an IntentTimelineProvider,

which is necessary for switching to

IntentConfiguration.

 Make the Switch to IntentConfiguration
Now you are all set to make the switch to IntentConfiguration. If you

open the TwitterTrendsWidget.swift file of the Widget folder in the

TwitterTrendsWidget folder, you will see that StaticConfiguration has

been used right now in the body of TwitterTrendsWidget.

In TwitterTrendsWidget, create a variable, dynamicConfiguration, by

using the code given in Listing 5-7.

Listing 5-7. Creation of a dynamicConfiguration variable

var dynamicConfiguration: some WidgetConfiguration {

 IntentConfiguration(kind: kind, intent: TrendsIntent.

self, provider: TwitterTrendsIntentProvider()) { entry in

 LargeWidgetView(tweets: entry.statuses, title:

entry.trendTitle)

 }

 .supportedFamilies([.systemLarge])

 .configurationDisplayName("Tweets")

 .description("Tweets Trending Today")

 }

In Listing 5-7, a variable named dynamicConfiguration is created

which returns an IntentConfiguration initializer. It uses the value of

TwitterTrendsWidget’s kind variable, TrendsIntent as its intent, and the

initializer of TwitterTrendsIntentProvider as its timeline provider. All

the other lines of code are similar to that of the StaticConfiguration that

exists in the body of TwitterTrendsWidget.

Now, replace the body of TwitterTrendsWidget with the code given in

Listing 5-8.

Chapter 5 FetChing ConFiguration options

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

141

Listing 5-8. Using dynamicConfiguration in the body of

TwitterTrendsWidget

var body: some WidgetConfiguration {

 dynamicConfiguration

 }

The code given in Listing 5-8 replaces the StaticConfiguration with

the dynamicConfiguration variable that contains IntentConfiguration.

Well done! You have switched to IntentConfiguration.

 Test – Test – Test!
Uninstall all the existing installations of TwitterTrends in your device or

simulator. Now, select the TwitterTrends scheme and run it. To test your

widget, add the TwitterTrends widget to your homescreen and try editing

it. You should see a configuration screen similar to the one shown in

Figure 5-4. Tap on Choose to see a screen where you can see a list of trends

fetched from Twitter. This screen will look similar to Figure 5-5. From that

screen, select any trend and go back to your homescreen. Now, in your

widget, you should see the tweets related to that particular trend you had

selected.

Awesome job! We hope you had fun.

 Summary
Congratulations on making it this far! In this chapter, you learned how

you can make your widget fetch data from a server so that you can use

those data as configuration options for the parameter in your configurable

widget. Some part of this chapter must have been like a revision of the

Chapter 5 FetChing ConFiguration options

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

142

previous chapters to you. And we hope you enjoyed following along and

learning. If you have any confusions, please check out the final version of

the code by opening the final project folder named TwitterTrendsFinal in

TwitterTrends.zip.

Now you are able to create any kind of widgets – be it a widget that

can or cannot be configured or a widget whose parameter has hard-coded

configuration options or dynamic configuration options fetched from a

server. You have mastered them all.

We wish you luck for the future. Happy coding!

Chapter 5 FetChing ConFiguration options

688

689

690

691

692

693

694

695

696

Author Queries
Chapter No.: 5 0005120290

Queries Details Required Author’s Response

AU1 Please check if “step 5 of Creating and Configuring SiriKit Intent
Definition File” is correct as is.

AU2 Please check if instances of “getTimeline(for:in:completion)”
should be changed to “getTimeline(for:in:completion:)”.

143© Sagun Raj Lage and Prakshapan Shrestha 2021
S. R. Lage, P. Shrestha, Getting Started with WidgetKit,
https://doi.org/10.1007/978-1-4842-7042-4

Index

A, B, C
CategoriesExtension.swift, 82, 87
createTimelineFromTweets(respo

nse:) method, 135, 139

D, E
DateHelper.getDayAndMonth

InNumbers() method, 59
Deep linking, 84, 89, 91,

 94, 101
detail(with:category:) method,

95–97, 109

F
fetchOnThisDayData(for:complet

ion:) method, 76–79
fetchOnThisDayData(with:)

method, 58, 60, 75–77

G
getSnapshot(in:completion:)

method, 30, 33, 71
getTimeline(for:in:completion:)

method, 71, 134,
137, 139

H, I, J, K, L
handleLinks(for:) method, 89,

101, 102
HStack, 9–12, 107–109
Human Interface Guidelines (HIG),

3, 14–16

M, N
@main property, 39, 41

O
onOpenURL(perform:) method,

86, 89, 91, 98
OnThisDay

API, 59
detail screen, 49
folder structure, 55, 57
homescreen, 46, 47
large-size widget, 52
medium-size widget, 52
options, 53
Provider.swift, 60
screenshot display, 51
select events, 48
small-size widget, 51
types of events, 58
users, 54

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

https://doi.org/10.1007/978-1-4842-7042-4#DOI

144

OnThisDayApp.swift, 55, 56, 90
OnThisDayWidgetExtension, 61, 83
OnThisDayWidget.swift

API, 75
create variable, 80
WidgetView, 81

IntentConfiguration, 69, 74
category property, 73
intent types, 70
methods, 71
WidgetEvent timeline entry, 74

StaticConfiguration, 62, 63
Categories enum, 67
intent definition file, 64
parameter, 66
SiriKit, 63

P, Q, R
placeholder(in:) method, 29, 30
provideSelectedTrendOptionsColl

ection(for:with:) method,
128, 130

S
supportedFamilies(_:), 17, 18
SwiftUI, 3

declarative approach, 6
definition, 5
lifesaver, 7
views

button, 8
HStack, 9, 11

image, 9
text, 7
VStack, 11, 12
ZStack, 12, 13

T, U, V
Tap target, 85

large widget, 106
medium widget, 91–95, 98, 100,

103, 105, 107–109
small widget, 86–91

TimelineEntry, 24–26, 29, 37,
57, 121

TimelineProvider
date property, 26
definition, 26
getSnapshot, 30, 32, 33
getTimeline, 33–35
placeholder, 29, 30
SmallWidgetDataProvider, 26,

28, 29
TrendsView.swift, 120
TweetsView.swift, 120
TwitterTrends, 112

create file, 121
create parameter, 123, 124
dynamicConfiguration, 140
folder structure, 119
homescreen, 113
IntentConfiguration, 132
intent definition file, 122
IntentTimelineProvider, 132, 133
large-sized, 115

INDEX

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

145

list of tweets, 114
selectedTrend parameter, 125
TrendsIntentHandling, 127
users, 118

TwitterTrendsWidget.swift, 121

W, X, Y, Z
Widget

components, 44
extension, 22, 23

SoccerTime’s, 21, 22
UI, 35–37, 39

WidgetConfiguration, 24, 39–43
WidgetFamily, 16–18
WidgetKit

Apple’s framework, 3
definition, 2
features, 1

widgetURL(_:) method, 86,
88, 106

WidgetView.swift file, 57

INDEX

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

	Table of Contents
	About the Authors
	About the Technical Reviewer
	Before You Begin…
	Chapter 1: Getting Familiar with WidgetKit in a Flash
	Background
	Hello, WidgetKit!
	Summary

	Chapter 2: SwiftUI, Human Interface Guidelines, and Widget Family
	SwiftUI
	Basic SwiftUI Views for Widgets
	Text
	Button
	Image
	HStack
	VStack
	ZStack

	Human Interface Guidelines
	Widget Family
	Summary

	Chapter 3: Writing Your First Widget
	Widget Extension
	TimelineEntry
	TimelineProvider
	placeholder(in:)
	getSnapshot(in:completion:)
	getTimeline(in:completion:)

	Developing Your Widget’s UI
	WidgetConfiguration
	Summary

	Chapter 4: Making Widgets Configurable and Interactive
	Let’s Get Started
	Giving Widgets the Power to Talk to API
	Allowing Users to Configure Widgets
	Create and Configure a SiriKit Intent Definition File
	Switch to IntentConfiguration
	Talk to the API and Display Fresh Information in Widgets
	Time to Put Your Widgets to the Test!

	Navigating to the Relevant Screens of the App Through Tap Targets
	Addition of Tap Target in Small Widget
	Addition of Tap Target in Medium Widget
	Addition of Tap Target in Large Widget

	Summary

	Chapter 5: Fetching Configuration Options
	Getting Started
	Time to Create a SiriKit Intent Definition File
	Setting Up IntentHandler to Fetch Top Trends and Send Them to the Widget
	Switching to IntentConfiguration
	Create an IntentTimelineProvider
	Make the Switch to IntentConfiguration

	Test – Test – Test!
	Summary

	Index

