## Data Structures and Algorithms in Swift Ray Wenderlich **Book Details**

Title: Data Structures and Algorithms in Swift

Author: Kelvin Lau & Vincent Ngo

Publisher: Ray Wenderlich

Language: English

Subject: Swift / Computers & Technology / Programming / Apple Programming

No. of pages: 430

Format: PDF, EPUB, Source code

Recently I bought a set of 10 IOS books – Advance IOS and Swift Bundle from Ray Wenderlich. As you can see in the image above, which includes Data Structures and Algorithms in Swift . And now I want to transfer it to you for $ 60 (10 books) Payment Via Paypal or Bitcoin, All books are the latest version and have full source code, I will share it for you for $ 60 Includes EPUB file and full source code, you can download on Google Drive. When any book have new version i will get it free for you.

List bundle 10 books: Advance IOS and Swift:

2, Server Side Swift with Vapor

3, Push Notifications by Tutorials

5, Data Structures and Algorithms in Swift

6, Realm Building Modern Swift Apps with Realm

7, RxSwift Reactive Programming with Swift

9, Machine Learning by Tutorials

10, Advanced iOS App Architecture

Please contact me by Email: **truonghang0207@gmail.com.**

You can see the full description 10 books at **https://www.prograbooks.com/2018/05/advanced-swift-bundle-by-ray-wenderlich-html**

Thank you

**Section I: Introduction** Data Structures and Algorithms in Swift Book

The chapters in this short but important section will motivate the study of data structures and algorithms as well as give you a quick rundown of what is built into the Swift standard library that you can build from.

Specifically, you will learn:

• **Chapter 1, Why Learn Data Structures & Algorithms?**: Data structures are a well-studied area, and the concepts are language agnostic; a data structure from C is functionally and conceptually identical to the same data structure in any other language, such as Swift. At the same time, the high-level expressiveness of Swift make it an ideal choice for learning these core concepts without sacrificing too much performance.

• **Chapter 2, Complexity**: Answering the question, “Does it scale?” is all about understanding the complexity of an algorithm. Big-O notation is the primary tool you use to think about algorithmic performance in the abstract, independent of hardware or language. This chapter will prepare you to think in these terms.

• **Chapter 3, Swift Standard Library**: Before you dive into the rest of this Data Structures and Algorithms in Swift book, you’ll first look at a few data structures that are baked into the Swift language. The Swift standard library refers to the framework that defines the core components of the Swift language. Inside, you’ll find a variety of tools and types to help build your Swift apps.

These fundamentals will get you on your way and, before you know it, you’ll be ready for the more advanced topics that follow. Let’s get started!

**Section II: Elementary Data Structures**

This section looks at a few important data structures that are not found in the Swift standard library but form the basis of more advanced algorithms covered in future sections. All of them are collections optimized for (and enforce) a particular access pattern. You will also get a glimpse of how protocols in Swift can be used to build up these useful primitives.

Each concept chapter is followed by a Challenge chapter where you will be asked to answer something about the data structure, write a utility function, or use it directly to solve a common problem. Worked solutions to the Challenge chapters are located at the end of the Data Structures and Algorithms in Swift Data Structures and Algorithms in Swift book. We encourage you not to peek at our solution until you have given the challenge a shot yourself.

• **Chapter 4, Stack Data Structure**: The stack data structure is identical in concept to a physical stack of objects. When you add an item to a stack, you place it on top of the stack. When you remove an item from a stack, you always remove the topmost item. Stacks are useful, and also exceedingly simple. The main goal of building a stack is to enforce how you access your data.

**Chapter 6, Linked List**: A linked list is a collection of values arranged in a linear unidirectional sequence. A linked list has several theoretical advantages over contiguous storage options such as the Swift Array, including constant time insertion and removal from the front of the list, and other reliable performance characteristics.**Chapter 8, Queues**: Lines are everywhere, whether you are lining up to buy tickets to your favorite movie, or waiting for a printer machine to print out your documents. These real-life scenarios mimic the queue data structure. Queues use first-in-first-out ordering, meaning the first element that was enqueued will be the first to get dequeued. Queues are handy when you need to maintain the order of your elements to process later.

Even with just these basics you‘ll begin to start thinking “algorithmically” and seeing the connection between data structures and algorithms. Time to get started!

**Section III: Trees**

Trees are another way to organize information, introducing the concept of children and parents. You‘ll take a look of the most common tree types and see how they can be used to solve specific computational problems. Just like the last section, this section will introduce you to a concept with a chapter, followed by a Challenge chapter to help you hone the skills you are learning.

The tree structures you will learn about in this section include:

**Chapter 10, Trees**: The tree is a data structure of profound importance. It is used to tackle many recurring challenges in software development, such as representing hierarchical relationships, managing sorted data, and facilitating fast lookup operations. There are many types of trees, and they come in various shapes and sizes.**Chapter 12, Binary Trees**: In the previous chapter, you looked at a basic tree where each node can have many children. A binary tree is a tree where each node has at most two children, often referred to as the left and right children. Binary trees serve as the basis for many tree structures and algorithms. In this chapter, you’ll build a binary tree and learn about the three most important tree traversal algorithms.**Chapter 14, Binary Search Trees**: A binary search tree facilitates fast lookup, addition, and removal operations. Each operation has an average time complexity of O(log n), which is considerably faster than linear data structures such as arrays and linked lists.**Chapter 16, AVL Trees**: In the previous chapter, you learned about the O(log n) performance characteristics of the binary search tree. However, you also learned that unbalanced trees can deteriorate the performance of the tree, all the way down to O(n). In 1962, Georgy Adelson-Velsky and Evgenii Landis came up with the first self-balancing binary search tree: the AVL Tree.

**Chapter 18, Tries**: The trie (pronounced as “try”) is a tree that specializes in storing data that can be represented as a collection, such as English words. The benefits of a trie are best illustrated by looking at it in the context of prefix matching, which is what you’ll do in this chapter.**Chapter 20, Binary Search**: Binary search is one of the most efficient searching algorithms with a time complexity of O(log n). This is comparable with searching for an element inside a balanced binary search tree. To perform a binary search, the collection must be able to perform index manipulation in constant time, and must be sorted.**Chapter 22, The Heap Data Structure**: A heap is a complete binary tree, also known as a binary heap, that can be constructed using an array. Heaps come in two flavors: Max heaps and Min heaps. Have you seen the movie Toy Story, with the claw machine and the squeaky little green aliens? Imagine that the claw machine is operating on your heap structure, and will always pick the minimum or maximum value, depending on the flavor of heap.**Chapter 24, Priority Queue**: Queues are simply lists that maintain the order of elements using first-in-first-out (FIFO) ordering. A priority queue is another version of a queue that, instead of using FIFO ordering, dequeues elements in priority order. A priority queue is especially useful when you need to identify the maximum or minimum value given a list of elements.

Trees are a very useful way to organize information when performance is critical. Adding them as a tool to your toolbelt will undoubtedly prove to be useful throughout your career. Let‘s get started!

**Section IV: Sorting Algorithms** in Data Structures and Algorithms in Swift

Putting lists in order is a classical computational problem. Sorting has been studied since the days of vacuum tubes and perhaps even before that. Although you may never need to write your own sorting algorithm when you can use the highly optimized standard library, studying sorting has many benefits. You will be introduced, for example, to the all important technique of divide and conquer, stability, and best and worst case timings.

This section will follow the same structure of introducing you to a concept with a chapter, followed by a Challenge chapter so that you can practice the skills you are acquiring. The sorting algorithms you will cover in this section include:

• **Chapter 26, O(n****2****) Sorting Algorithms**: O(n2) time complexity is not great performance, but the sorting algorithms in this category are easy to understand and useful in some scenarios. These algorithms are space efficient; they only require constant O(1) additional memory space. In this chapter, you’ll be looking at the bubble sort, selection sort, and insertion sort algorithms.

**Chapter 28, Merge Sort**: With a time complexity of*O*(*n*log*n*), merge sort is one of the fastest of all general-purpose sorting algorithms. The idea behind merge sort is*divide and conquer*— to break up a big problem into several smaller, easier- to-solve problems and then combine those solutions into a final result. The merge sort mantra is to*split first*and*merge after*. In this chapter, you’ll implement merge sort from scratch.**Chapter 30, Radix Sort**: In this chapter, you’ll look at a completely different model of sorting. So far, you’ve been relying on comparisons to determine the sorting order. Radix sort is a non-comparative algorithm for sorting integers in linear time. There are multiple implementations of radix sort that focus on different problems. To keep things simple, in this chapter you’ll focus on sorting base 10 integers while investigating the least significant digit (LSD) variant of radix sort.

**Chapter 32, Heapsort**: Heapsort is another comparison-based algorithm that sorts an array in ascending order using a heap. This chapter builds on the heap concepts presented in Chapter 21, “The Heap Data Structure.” Heapsort takes advantage of a heap being, by definition, a partially sorted binary tree.**Chapter 34, Quicksort**: Quicksort is another divide and conquer technique that introduces the concept of partitions and a pivot to implement high performance sorting. You‘ll see that while it is extremely fast for some datasets, for others it can be a bit slow.

Studying sorting may seem a bit academic and disconnected to the “real world” of app development, but understanding the tradeoffs for these simple cases will lead you to a better understanding and let you analyze any algorithm. Let’s get started!

**Section V: Graphs**

Graphs are an extremely useful data structure that can be used to model a wide range of things: webpages on the internet, the migration patterns of birds, protons in the nucleus of an atom. This section gets you thinking deeply (and broadly) about how to use graphs and graph algorithms to solve real world problems.

The chapters that follow will give the foundation you need to understand graph data structures. Like previous sections, every other chapter will serve as a Challenge chapter so you can practice what you’ve learned. The graph related topics you will cover in this section include:

**Chapter 36, Graphs**: What do social networks have in common with booking cheap flights around the world? You can represent both of these real-world models as graphs! A graph is a data structure that captures relationships between objects. It is made up of vertices connected by edges. In a weighted graph, every edge has a weight associated with it that represents the cost of using this edge. This lets you choose the cheapest or shortest path between two vertices.**Chapter 38, Breadth-First Search**: In the previous chapter, you explored how graphs can be used to capture relationships between objects. Several algorithms exist to traverse or search through a graph’s vertices. One such algorithm is the breadth-first search algorithm, which can be used to solve a wide variety of problems, including generating a minimum spanning tree, finding potential paths between vertices, and finding the shortest path between two vertices.**Chapter 40, Depth-First Search**: In the previous chapter, you looked at breadth- first search where you had to explore every neighbor of a vertex before going to the next level. In this chapter, you will look at depth-first search, which has applications for topological sorting, detecting cycles, path finding in maze puzzles, and finding connected components in a sparse graph

**Chapter 42, Dijkstra’s Algorithm**: Have you ever used the Google or Apple Maps app to find the shortest or fastest from one place to another? Dijkstra’s algorithm is particularly useful in GPS networks to help find the shortest path between two places. Dijkstra’s algorithm is a greedy algorithm, which constructs a solution step-by-step, and picks the most optimal path at every step.**Chapter 44, Prim’s Algorithm**: In previous chapters, you’ve looked at depth-first and breadth-first search algorithms. These algorithms form spanning trees. In this chapter, you will look at Prim’s algorithm, a greedy algorithm used to construct a minimum spanning tree. A minimum spanning tree is a spanning tree with weighted edges where the total weight of all edges is minimized. You’ll learn how to implement a greedy algorithm to construct a solution step-by-step, and pick the most optimal path at every step.

After completing this section, you will have powerful tools at your disposal to model and solve important real-life problems using graphs. Let’s get started!